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ABSTRACT

Changing climate, human interventions to natural water flow pattern, haphazard urbanization etc., are
the reasons for intense flood even after development of so many structural measures of overflow
control. Kulfo River basin is situated in relatively dry southern area of the Ethiopia and is still under
geographical modification with hilly topography and impervious soil texture. The concern of the present
research is to simulate flood episode in order to develop flood management strategies to reduce disaster.
The complexicity of natural hydrological phenomenon and dependent random variables can be better
expressed considering it as stochastic process. Flood (maximum river flow) forecasting on the Kulfo
River with monthly runoff data using stochastic ARIMA, Time Series model was developed for warning
purposes. The analysis of seasonally varying time series of discharge data has revealed that a higher
order ARIMA model may produce excellent results for three to six months forecast.
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INTRODUCTION

Hydroinformatics focus on applications of
advanced information technologies and statistical
tools for better understanding and management of
the hydrological phenomenon. Hydrological
phenomenons are cyclic and stochastic in nature.
In hydroinformatics the river is considered as a
water-based asset, with flows patterns largely as
stochastic. River can be considered both as a
generic object with properties pertaining to the flow
behavior and as a particular object with its own
unique characteristics. The significant information
needed for river flood management is about past
and present runoff in the river and the governing
rainfall data covering the river catchment area
coupled with the derived information about the
human dimension, the historical, sociological, legal,
economic and even political aspects (Patel and
Shete, 2007).

The physical models are most efficient to
estimate a flood event because such models have
built within it knowledge of the physics, like the
dimensions of the flood plains, variations in
meteorological parameter, runoff coefficients,
roughness values, head losses, etc.. However, when
there is a need for very rapid predictions of flow
patterns, say, in a forecasting situation, or when
long time series are being run, or a Monte Carlo
analysis is required, then the physicallybased model
is cumbersome (Beven, 2001). There are now a
number of such situations where time series
analyses are being used to forecast such extreme
events in rivers. Time series analysis allows
identification of hidden deterministic behavior and
thus understanding of cause and effect relationship
in problems (Schwartz and marcus1990). The
univariate model provides an increased
understanding of the behavior of the system. The
changes in the measured values are the function
of shocks (the deviation from the expected results
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provided system dynamicsheld constant) to the time
process occurring during the past months. So that
the residuals are not correlated more than 5%
insignificant level and normalize the residuals as
much as possible. Thus the fitted model is the better
choice (Murray and Farber, 1982).

The paper attempts to describe the
occurrences of the river floods using stochastic time
series forecasting method. The particular emphasis
has been given for the accurate flood forecasting
and warning for an effective management of flood
disaster if required. The form of modeling used to
make sense of the acquired data is Time Series
ARIMA modeling. The results of an analysis of
acquired and generated information supports
decision to regulate the real world, the river, its
environments and the people associated with it.

Study area and data

The applicability of data based stochastic
analysis is studied for a perennial medium size hilly
river named Kulfo. The river spans in great Abaya -
Chamo basin of southern Ethiopia. The Abaya -
Chamo basin has a catchments of about 16,400
square kilometers with river drain area consisting
of about 3500 square kilometers. Rainfall pattern is
mostly indefinite imparting frequent inundation to
Kulfo river basin despite an average yearly rainfall
figure. The river has response time of about six to
eight hours depending upon the rainfall intensity.

For development of the flood forecast
model at least one set of continuous flow
measurement in each sub-catchments associated
with a significant risk area, capable of capturing
extreme flood discharges is desirable. Further, a
standardized recording of key information,
facilitating quick flood response should be
maintained. In order to simplify the study only two
hydrological variables are selected for the analysis.
Data pertaining to the rainfall has been collected
from Meteorological Station situated within 1 km
range of river and river flow has been measured at
rain gauge installed at river discharge point near
Abaya Lake. The time plot of individual rainfall Mean
Monthly Rainfall (MMR) and Mean Monthly
Discharge (MMD) time series have been given in
fig 1 in a comparable form to reveal quantitative
consistency of MMD with MMR data set. The data

ranges have been taken as monthly cumulative and
eight year data beginning from January 1990 and
continuing till the end of 1998.

Fig. 1 shows an examination of the quality
of data base and the degree of independence for
each variable. From these plots we infer that the
data behave in a normalized manner and spread in
data is uniform over the time with cyclic nature. The
relationship between rainfall and river discharge is
linear or very nearly so. There is some inconsistency
in observed data towards the end of year 1996,
where the runoff and rainfall are not concurrent in
terms of quantity. The exact reason for which cannot
be inferred however, the gap may be attributed to
observational mistake or sudden release of
dammed water.

Methodology of model development

Real time flood forecasting can be done
using statistical, stochastic, deterministic and soft
computing techniques. When the occurrence and
outcome of a phenomenon, as in natural processes,
are random or uncertain the process is
characterized as stochastic (Priyan and Dalwadi,
2007). In hydrological phenomenon the rainfall is
the main occurrence with runoff as its foremost
associated outcome. Both rainfall and runoff are
function of space and time and are covary
geographically and temporarily (and seasonally).
Therefore, the flood which too is a consequence of
rainfall and runoff can smartly be represented and
forecasted by use of stochastical modeling of
historical runoff data. Stochastic model are good
enough to capture sudden changes in natural flood
however the gaps in flood data impair forecasting
results.

The observation of rainfall and runoff taken
at temporal order constitute the time series. The
inherent cause effect relationship in the hydrological
phenomenon of a stochastic time series can be
analysed by applying of the Box — Jenkins approach
(Box and Jenkin, 1994). The Box- Jenkins approach
usages the concept of AutoRegression Integration
and Moving Average (abbreviated as ARIMA)
modeling, where the dependent variable is lag
regressed onto itself and smoothened thus giving
rise to the ARMA and related ARIMA and SARIMA
models (S stands for the seasonally regressed time
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series). These models are applicable to stationary
series, where there is no systematic change in mean
(i.e. the series has been detrained) and variance is
constant over time (Kendall and Ord, 1992).

The degree of dependence of variables is
analyzed by estimating the autocorrelation function.
for MMD series. These results are significant at the
95% confidence level or twice the standard deviation
which is 0.068 (using 1/n*, where n = 84) the total
numbers of observed variables. In general a non
seasonal ARIMA model can be written as

(1-4B-¢,B2—..—4,B?)V'z,=(1-6B-0,B>.-0,B%)3,

where at, denotes the residual series, B
backward shift operator defined as BZ, = Z ,, B2Zt
= Z,, and so on and the terms of ¢ and 6 denotes
coefficient value of an autoregressive and moving
average process of order p and g respectively. When
an observation zt of a particular month has some
relation with the observation made in the same
month of the previous year, the seasonal
dependency modify the equation as:

(1-®,B-®,B* —..- & ,B)V 2 =(1-0,B%-0,B*-.-0 B%)q

where et is a normal random deviate, and
seasonality s = 12 and the terms given by © and @,
represents corresponding seasonal moving average
and autoregressive operators of order Q and P. As
et of seasonal ARIMA equation is not necessarily
independent, therefore combining non seasonal and
seasonal equations we get the general multiplicative

seasonal ARIMA model of order (p,d,q) x (P.D,Q)
of the form

®,(B°),(B)VEZ,=0,(B")-0,(B)a

RESULT AND DISCUSSION

Model development process

The objectives of this study are firstly to
identify a suitable ARIMA model based on Box-
Jenkins approach. Since rainfall and hence river
runoff is a seasonal phenomenon, we need to
identify the order (p,d,q) x (P,D,Q) for a seasonal
univariate model and also to find out the degree of
best fit seasonality, which provides a parsimonious
representation for both the stochastic component
and the total series under consideration. Finally the
least square estimates of the parameters of time
series models are used for forecasting the river flow.
For identification of ARIMA model parameters (p,
d, q) and (P, D, Q), the Auto correlations coefficient
(ACC) and Partial autocorrelations coefficient (PAC)
of MMD time series have been plotted for various
combinations of differencing (d=0 and d=1) and lags.
The graphical representation of ARIMA model
building process is given in the fig. 2. The original
and differenced data has been plotted to check the
stationarity in the MMD time series. Identification
of model parameter is mainly based on ACC and
PAC plots of time series. The runoff of the Kulfo
River shows a strong seasonal pattern, the same
can be seen in the ACC and PACC plots and hence
the flow pattern requires a seasonal model.

Table 1: Values of seasonal arima model parameters

Parameter Coefficient Std. Error Coefficient t value P
AR1 (¢) -0.9997 0.0033 -307.51 0
SAR1 (D)) 0.1887 0.1984 0.95 0.245
SAR2 (®,) -0.411 0.1744 -2.36 0.021
SAR3 () -0.6456 0.1684 -3.83 0
MA1 (6, -1.018 0.0001 -6923.29 0
SMA1 (0,) 1.708 0.2624 6.51 0
SMA1 (6,) -1.1789 0.3877 -3.04 0.003
SMA1 (6,) 0.3167 0.3796 0.83 0.107
Constant 2.0979 0.1025 20.47 0
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An analysis of significant ACC and PAC
plots implies to the first order non seasonal ARMA
and third order seasonal ARIMA parameterization
of MMD series. Compared with 95% confidence
limits, few of the partial autocorrelations (three) are

found significant. The finally selected seasonal
ARIMA forecast model for the mean monthly
discharge of Kulfo river is (p,d,q, P,D,Q)S =
(1,0,1,3,1,3)12. The other ARIMA model tried with
different parametric value could not result in an

Mean Monthly Rainfall and Max. Monthly Discharge
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Fig. 1: Rainfall and runoff of Kulfo River (Jan. 1990 - Dec. 1998)
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Fig. 2: Model building process of MMD time Series of River
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impressive forecast. In table 1, the values of various  preciseness of the coefficient estimation.

AR and MA parameters for seasonal and non

seasonal cases are given with corresponding The fitting of the properly transformed data
standard error (SE) of coefficient,and tand pvalues.  to the time series model is accomplished by
Small SE coefficient and p value with corresponding  obtaining least square estimate of the parameters.
t statistic indicate the significance and the  The residuals from the univariate process are used
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Fig. 3: Actual and simulated mean monthly discharge
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Fig. 4: Residual analysis of fitted arima model
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Scattered Plot of Observed and Predicted Mean Monthly Flow
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Fig. 5: Scattered analysis of fitted arima model

in the final selection of the complete dynamic model.
For each iteration / phase of model fitting, the criteria
for adequacy of model is that the residuals should
be independent (i.e. no or negligible autocorrelation
exist) and that the model exhibits parsimony (least
number of parameters). The residuals should also
exhibit a symmetric distribution (e.g. a normal
distribution) (Murray et. al., 1982). The negative
values of fitted auto regression parameter explains
that the time series variables are related in a quash
manner, means their effect is to reduce the
discharge value.

The forecast

The process of creating reliable and robust
analysis mostly results in the models of
underpredicted extreme river discharge. This is in
view of the fact that the computational modeling is
limited to situations where the theoretical analysis
is valid and sufficient data are available for proper
calibration and verification. Monthly runoff discharge
is forecasted for 12 months lead time taking January
1997 as the origin. It is obvious from fig. 3 that the
results of forecast for all twelve months are
reasonably close to the actual river flow and
following the mean values. The forecasts are
sensibly fair in capturing runoff pattern even in the
case of astonishing peaks as in the case of October,
1997. The forecast error equally fall both sides of
zero mean value and the forecasted values have a
linear increasing trend.

Forecast evaluation
There are two methods to evaluate the

performance of model results first one is using
established statistical formulae and the other is
stochastic, through the application of data itself i.e.
residual analysis. The importance of the later one
is justified because it emphasis more to judge the
inherent data characteristics. The main advantage
of stochastic method is that one can evaluate model
performance by the same methods used for model
building and any discrepancies in model formulation
can be easily recognized so that modeler can take
immediate decision for improvement of model.
Former one is applicable for all models related to
the natural process and are adequately explained
in the literature.

Preliminary statistical evaluation

The results of Modified Box-Pierce (Ljung-
Box) Chi-Square statistic, t test and on the
forecasted values of model are as under:

Lag 12 24 36 48
Chi-Square 104 249 422 56.3
Degree of Freedom 3 15 27 39
P-Value 0.015 0.052 0.032 0.036

The accuracy of fit hypothesis is judged
using chi square value corresponding to the lag and
degree of freedom (DF), smaller p value
corresponding to the adequacy of model fit.

Stochastical Evaluation (The Residual Analysis)

Residual (difference between the observed
and predicted / fitted values) represents that part
of the observation which is not explained by the
fitted model. After fitting the model residual analyses
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have been done using a set of five residual plots:
Anormal probability plot.

The residuals versus the fitted values,

The residuals versus the order of the data
The histogram of the residuals

The residuals versus predictors (ACF and
PACF for MMD time series).

arLNE

A well fitted time series model is
represented by the normally distributed but constant
residual, which do not exhibit any pattern (trend,
seasonality, cyclic etc.) as a function of the response
variable. The residual analysis of runoff data is
shown in figure 4 reveals that that
’ Histogram of residual clearly shows that most
of the residuals are concentrated within a
narrow range of zero. A large fraction of
residuals are negative and within a narrow
limit, indicating the model suitability to drag
the optimum filtering of data.

The normal probability plot of residual also
confirms the central tendency of residuals
being between the £1.5, i.e. that more than
95% residuals are normally distributed and
are constant, that is, they do not exhibit a
trend as a function of the response variable.
The plot of residual versus the order of the
data reveals that most of the residual values
fall within £5% till 50 observations.

The plot of residual versus the fitted values
shows that about 99% residual values falls
within £5% and the range of residuals lying
centered within 10 of fitted values.

For a best fit time series model the
residuals should be insignificant and their
autocorrelation should be weak within 95%
confidence limits. The plot of the residual’s
autocorrelation and partial autocorrelation clearly
reveal that there is no dominant ACF and PACF of
residuals till lag 12, i.e. ACF and PACF of residuals
are insignificant confirming that the appropriateness
of the fitted model. Thus the residual analyses
establish that the residual sequence behaves as a
white noise series and the fitted model perform well
in the domain of observations.

Comprehensive statistical evaluation
Model evaluation analysis begins with
univariate analysis. A quantitatively close output in

Table 2: Statistical evaluation of river runoff forecasts

Performance Measures

Error Analysis

Univariate Analysis

RMSE

Errors

S. D. Skewness

FB MG VG FAC

1A

CD

MBE MAE SDE NMSE T

MPE

45 0952 0.898 -0.04 074 156 4
0.034

42 05
0.0866 3.5 04

0.1232

4.4
3.7

0.93 1.41 -0.003 0.4 3.9
1.26 0.003 3.2

0.93

5.4
5.9

8.6
8.6

0.829 1.273 0

0.935

0.970

3.3

0.3

85
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standard deviation and skewness in both observed
and simulated data predict preliminary worthiness
of model prediction. A scatter plot between the
paired observations and predictions, figure 5,
reveals the magnitude and spread of the model’s
over or under-predictions.

Statistical comparisons of model estimates
or predictions with pair wise matched observations
remain among the most basic means of assessing
model performance in the hydrological studies.
Hanna and Chang (2004) and ASTM (2000)
propose some comprehensive statistical model
performance measures which includes the fractional
bias (FB), the geometric mean bias (MG), the
normalized mean square error (NMSE), the
geometric variance (VG), the correlation coefficient
(R), Index of Agreement and the fraction of
predictions within a factor of two of
observations (FAC2). The detail discussion over the
subject can be referred at Nigam et al., (2008). The
Mean error or bias is the fundamental to judge the
over or under predictive nature of model. The
general relations among errors are as MBE < MAE
< RMSE.

According to Oreskes et al (1994),
evaluation (verification and validation) of
mathematical models of natural systems are
impossible, because natural systems are never
closed and because model solutions are always
non-unique. The random nature of the process leads
to a certain irreducible inherent uncertainty. Thus
models can only be confirmed or evaluated by the
demonstration of good agreement between several
sets of observations and predictions.

The numerical values of these parameters
are given in the table 2 for the two cases first with
the real forecast and another for the even out
forecast within factor of 2. These criteria provide
more information on the systematic and dynamic
errors inherent in the model simulation. A perfect
model would have MG, VG, R, and FAC2=1.0; and
FB and NMSE=0.0. The modified performance
values can be attributed to the implied mean

forecasts (Boyle et al., 2000).
CONCLUSION

The first order autoregressive parameter
indicates a substantial degree of variability and
dependence in the stochastic component; the
domination of the first order parameter being the
highest for the smallest catchment. The values of
higher order persistence on the other hand speak
of a fairly uniform degree of dependence in the
stochastic components on past events. It is found
that the simulated values are in good agreement
with the observed runoff for the first six months. In
the first three months the simulated values are much
closed to the actual one and over-predicted which
a desirable outcome from the hydrological models.

From third months to the sixth months
forecasts three simulated values are in good
concurrence with the observed pattern of the actual
runoff hence can be considered an affirmative
model contribution. After six months the pattern of
simulated values are sensible to capture the peak
discharges as well as the pattern of the past flow.
However the quantitative results of model
predictions are inconsistent and owing to under-
predictive nature cannot be used for forecasting
purposes. Though residual study confirms model
suitability up to twelve month ahead forecast to a
great extent but considering the practical
requirements of forecasted values, model can be
considered fair to six month forecasts only.

It is demonstrated that ARIMA modeling
is a appropriate approach to model hydrological data
which often exhibits autocorrelation with time and
need proper explanation of underlying dynamics
which cannot be done by simple statistical
forecasting methods like regression analysis etc.
The Box-Jenkins approach considers
autocorrelations among the variables as well as
laglead relationship between variables. If we add
effect of rainfall data too in MMD series, i.e.
multivariate approach, this will help in to attain a
solid presumption of a cause-effect relationship in
time series analysis.
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