Interaction studies of copper fungicides with biological environment of soil

CHARANJIT KAUR¹, P. MAINI², and N.P. SHUKLA³

¹Department of Chemistry, Sri Satya Sai College for Women, Bhopal P.O Habibganj, BHEL (India) ²Institute of Excellence in Higher Education,Kolar Road, Bhopal (India) ³MPCST, Vigyan Bhawan, Bhopal - 462 023 (India)

(Received: March 20, 2007; Accepted: May 10, 2007)

ABSTRACT

Fungicides are one of the essential inputs in the improved technology for increasing crop production through crop protection. Copper fungicides Blitox and Fungimar are used widely as foliar sprays for control of many plant diseases. As major portion of fungicides applied to economically important crops eventually finds its way to soil, may disrupt the activities of microorganisms in the soil and thereby altering the biological equilibrium of soil. It is therefore planned to study the biological health of the soil with the help of viable counts of nine strains of *Rhizobium japonicum* after 21, 30 and 45 days intervals at 100 to 500 ppm concentrations of the two copper Fungicides. Results reveal that Blitox is more compatible than Fungimar to *R. japonicum*.

Key words: Blitox, fungimar *Rhizobium japonicum*, fungicides, viable counts.

INTRODUCTION

With the advent of high yielding crop varieties, the pest problems have become more acute, adversely affecting the crop yields. Fungicides are therefore, one of the major inputs in the improved technology for increasing crop production through crop protection, (Dharival and Singh 1993). A major portion of fungicides applied to economically important crops eventually finds its way to soil or aquatic system. On reaching the soil, the fungicides and /or their degradation products may disrupt the activities of the microorganisms in the soil and thereby alter its biological equilibrium with eventual repercussions in soil health, leading to agro ecological problems of great concern.

As copper fungicides are widely used for the control of many vegetables, fruits and flowering plant diseases, therefore the present study was planned.

MATERIAL AND METHODS

Black cotton soil samples were collected and sterilized in an autoclave for three consecutive days at 121°C for two hours per day, (Agarwal *et al.*, 1986).

Five days old cultures of Bradyrhizobium japonicum having 10 8 cells/ml were added to soil in the ratio of 10 ml of both culture in 100 gms of soil, (Neena, 1992). Calculated quantities of fungicide solution were added to maintain the concentration of 100, 200, 300, 400, and 500 ppm. The contents were mixed thoroughly and packed in low density polythene bags of 200 gauge sealed by electric sealer and kept for 21, 30, and 45 days at $28 \pm 2^{\circ}$ C. After completion of desired incubation period soil samples were withdrawn and used for colony counting with the help of colony counter, (Horshall 1956).

RESULTS AND DISCUSSION

The survival studies of isolates of R.japonicum in contact with Fungicides (Blitox and Fungimar) reveal a decrease with respect to increasing the concentration of fungicides from 100 to 500 ppm and also on increasing the time of contact.

At 100 ppm concentration of Blitox fungicides viable counts decrease from 56×10^5 to

23 x 10⁵, at 200 ppm concentration 56 x 10⁵ to 15 x 10⁴, at 300 ppm concentration 46 x 10⁵ to 93 x 10⁴, at 400 ppm concentration from $35x10^5$ to 76 x 10⁴ and at 500 ppm concentration 26 x 10⁵ to 53 x10⁴.

Observations with Fungimar Fungicide viable counts decrease from 39×10^5 to 9×10^5 at 100 ppm, from 29×10^5 to 68×10^4 at 200 ppm, from 15×10^5 to 35×10^4 at 300 ppm, from 9×10^5 to 26×10^4 at 400 ppm, from 93×10^4 to 15×10^3 at 500 ppm concentration .Observations

Table -	1: Viable	counts o	f various	isolates o	f Rhizobium	japonicum
in	contact w	vith Blitox	fungicid	e observa	tions after 3	0 days

Conc.	Isolate Number								
(in ppm)	CH-1	CH-2	CH-3	CH-4	CH-5	CH-6	CH-7A	CH-7B	CH-7C
Control	43 × 10⁵	42 × 10⁵	37 × 10⁵	36 × 10⁵	29 × 10⁵	45 × 10⁵	32 × 10⁵	36 × 10⁵	45 × 10⁵
100	43 × 10⁵	42 × 10⁵	37 × 10⁵	36 × 10⁵	29 × 10⁵	45 × 10⁵	32 × 10⁵	36 × 10⁵	45 × 10⁵
200	32 × 10⁵	33 × 10⁵	26 × 10⁵	29 × 10⁵	18 × 10⁵	34 × 10⁵	28 × 10⁵	27× 10⁵	35 × 10⁵
300	26 × 10⁵	24 × 10⁵	19 × 10⁵	9 × 10⁵	12 × 10⁵	26 × 10⁵	13 × 10⁵	15 × 10⁵	29 × 10⁵
400	95 × 104	93 × 104	82 × 104	86 × 104	78 × 10⁴	95 × 104	83 × 104	89 × 104	92 × 104
500	82 × 104	86 × 104	72 × 104	67 × 104	65 × 104	74 × 104	74 × 104	62 × 104	83 × 104

Table - 2: Viable counts of various isolates of *Rhizobium japonicum* in contact with Blitox fungicide observations after 45 days

Conc. Isolate Number									
(in ppm)	CH-1	CH-2	CH-3	CH-4	CH-5	CH-6	CH-7A	CH-7B	CH-7C
Control	35 × 10⁵	36 × 10⁵	29 × 10⁵	25 × 10⁵	23 × 10⁵	32 × 10⁵	29 × 10⁵	28 × 10⁵	39 × 10⁵
100	35 × 10⁵	36 × 10⁵	29 × 10⁵	25 × 10⁵	23 × 10⁵	32 × 10⁵	29 × 10⁵	28 × 10⁵	39 × 10⁵
200	29 × 10⁵	28 × 10⁵	16 × 10⁵	15 × 10⁵	18 × 10⁵	26 × 10⁵	16 × 10⁵	17× 10⁵	28 × 10⁵
300	13 × 10⁵	15 × 10⁵	9 × 10⁵	8 × 10⁵	93 × 104	17 × 10⁵	95 × 104	93 × 104	19 × 10⁵
400	93 × 104	95 × 104	89 × 104	79 × 104	82 × 104	93 × 104	86 × 104	76 × 10⁴	95 × 104
500	69 × 104	65 × 104	58 × 104	57 × 104	62 × 104	59 × 104	62 × 104	53 × 10⁴	68 × 104

Conc.	Isolate Number								
(in ppm)	CH-1	CH-2	CH-3	CH-4	CH-5	CH-6	CH-7A	CH-7B	CH-7C
Control	56 × 10⁵	56 × 10⁵	45 × 10⁵	43 × 10⁵	46 × 10⁵	54 × 10⁵	47 × 10⁵	37 × 10⁵	54 × 10⁵
100	39 × 10⁵	38 × 10⁵	30 × 10⁵	28 × 10⁵	29 × 10⁵	38 × 10⁵	27 × 10⁵	28 × 10⁵	36 × 10⁵
200	26 × 10⁵	29 × 10⁵	15 × 10⁵	12 × 10⁵	14 × 10⁵	26 × 10⁵	92 × 104	9 × 10⁵	29 × 10⁵
300	95 × 10⁴	93 × 104	89 × 104	92 × 104	95 × 10⁴	18 × 10⁵	83 × 104	92 × 104	15 × 10⁵
400	83 × 104	79 × 104	63 × 104	68 × 104	62 × 104	98 × 104	65 × 104	69 × 104	9 × 10⁵
500	72 × 10 ⁴	68 × 104	52 × 104	49 × 104	53 × 104	85 × 104	49 × 104	38 × 10⁴	93 × 104

 Table - 3: Viable counts of various isolates of *Rhizobium japonicum*

 in contact with Fungimar fungicide observations after 21 days

Table - 4: Viable counts of various isolates of *Rhizobium japonicum* in contact with Fungimar fungicide observations after 45 days

Conc. Isolate Number									
(in ppm)	CH-1	CH-2	CH-3	CH-4	CH-5	CH-6	CH-7A	CH-7B	CH-7C
Control	35 × 10⁵	36 × 10⁵	29 × 10⁵	25 × 10⁵	23 × 10⁵	32 × 10⁵	29 × 10⁵	28 × 10⁵	39 × 10⁵
100	23 × 10⁵	25 × 10⁵	18 × 10⁵	12 × 10⁵	9 × 10⁵	22 × 10⁵	10 × 10⁵	9 × 10⁵	25 × 10⁵
200	13 × 10⁵	9 × 10⁵	93 × 10⁵	89 × 104	92 × 104	15 × 10⁵	79 × 104	68 × 104	19 × 10⁵
300	89 × 104	85 × 104	79 × 104	63 × 104	60 × 104	90 × 10⁵	35 × 10⁴	45 × 10⁴	90 × 104
400	5 × 10⁴	49 × 104	82 × 10 ³	45 × 10⁴	42 × 104	82 × 104	26 × 104	32 × 104	69 × 104
500	39 × 104	28 × 104	15 × 10 ³	36 × 104	26 × 104	53 × 104	9 × 104	91 × 10 ³	25 × 104

suggest that Blitox is more compatible than Fungimar to R. Japonicum. Fungitoxic component of Copper Fungicides is the cupric ion for which little biochemical specificity exists, (Somers E 1961) the strong inhibitory action of Fungimar in comparison to Blitox is attributed to its strong bonding affinity to amino & carboxylic groups .It reacts with protein and acts as an enzyme inhibitor (The agrochemical hand book 1987). Among the strains CH-1, CH-2, CH-6 and CH-7C were observed to give higher counts suggesting better quality strains than others. There is not much difference in the viable counts of organism in the fungicide treated soils and untreated control therefore fungicide treatment can safely be used as a routine.

REFERENCES

- Dhariwal, G.S and Balvinder Singh., Pestic. their ecological impact in developing countries. Commonwealth Publ., India (1993).
- Agrawal, T C Neeru Narula and Gupta K G., Effect of Carbamate Pesticides on Nodulation, plant yield and nitrogen fixation by Pisum sativum and Vigna in presence of their respective Rhizobia. *Plant & Soil*, 94: 125-132 (1986).
- 3. Neena Jhanda., Studies of interaction of

chemical environment of soil with nitrogen fixing bacteria in particular to Rhizobium species. *Ph.D. Thesis* {Chemistry}, Barkatullah University (1992).

- 4. Horshall, J.G., Principles of fungicidal action. Cronica Botanica Co. Waltham Mass (1956).
- 5. Somers, E., The Fungitoxicity of metal ions. *Appl. Biol.* **49**, 246 (1961).
- The agrochemical Handbook, Second Ed .Royal Society of Chemistry. The University of Nottingham, NG 7, 2RD England (1987).