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Abstract
Diabetes Mellitus (DM) is a condition of hyperglycemia due to defects of 
insulin secretion and/or insulin action. Toxic metals such as lead, nickel, 
cadmium, arsenic and mercury have been identified which accumulate in 
various biological samples from T2D (type 2 diabetes) patients through 
environmental pollution and food chain. Present study will elucidate the 
toxicological effects of mercury (II) chloride in the pancreatic islets and liver 
tissues of rat which leads to dysfunction and degeneration of pancreatic 
islets and liver.  Photomicrograph of histology of treated pancreas exhibited 
the disruption of islets, disorientation of cells and disruption of connective 
tissue septa. In mercury (II) chloride treated group pancreatic cells were 
found to be pyknotic and cellular death was confirmed by membrane rupture 
and necrosis. Alteration of blood glucose levels were observed by glucose 
tolerance test. The liver sections of rats treated with mercury (II) chloride 
showed modification in the structure of this organ. Treated liver showed 
lower periodic acid/Schiff response. In this study, changes in the architecture 
of pancreatic islets as well as liver may be the reason behind diabetes.
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Introduction
Mercury is an environmental pollutant which 
produces health hazard (Marx, 2002; Ratcliffe  
et al., 1996). Its application is found in agriculture 
as fungicide, in medicine as topical antiseptic, 
disinfectant as well as amalgam fillings in dentistry 
(ATSDR, 1999).

Patients with Minamata disease (methylmercury 
poisoning) in Japan showed incidence of diabetes 
mellitus (DM) (Takeuchi and Eto, 1997; Uchino  
et al., 1995).  The study of Shigenaga (1976) showed 
that repeated treatment of rats with methylmercury 
(MeHg) induced diabetes mellitus (DM). Recently, 
Chen et al, (2006 and 2010) stated that mercuric 
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compounds influence pancreatic β-cell dysfunction. 
Toxic metals due to pollution and industrialization 
like lead (Pb), nickel (Ni), cadmium (Cd), arsenic 
(As) and mercury (Hg) are associated with alteration 
of glucose homeostasis and cause progress of 
diabetes (Khan and Awan, 2014).

Toxic metal-induced oxidative stress may decrease 
activity of insulin gene promoter and insulin mRNA 
expression in pancreatic islet β-cells and, thus, alter 
the glucose regulations (Zheng et al., 2018). Mercury 
and arsenic can induce many disorders including DM 
by oxidative stress leading to apoptosis (Chen et al., 
2009; Jomova et al., 2011).

This present study will explain the toxicological 
effects of mercury (II) chloride (HgCl2) in the 
pancreatic islets as well as liver tissues of rat to 
explain metal-induced diabetes mellitus (DM).

Materials and Methods
This study will elucidate the toxicological effects of 
mercury (II) chloride (HgCl2) in the pancreatic islets 
as well as liver tissues of rat by following methods.

Animals and Housing
The study was carried out on two groups of albino 
rats weighing between 100 to 120 g (total 14 rats, 
each group contained 7 animals). 

Animals in all groups were fed ad libitum and allowed 
free access to water and daily diet. All animals were 
acclimatized in laboratory condition and received 
human care.

Rats were divided into control group and their 
respective treated group (n=7/group). Rats (treated 
group) were injected with HgCl2 (5 mg/kg/day) for 
2 to 3 successive weeks (Chen et al., 2012) and 
control rats only received normal daily diet and water. 

Histological Investigation
Paraffin tissue sections of liver and pancreas were 
stained with haematoxylin and eosin (H&E) and 
periodic acid/Schiff (PAS) and examined.

Pancreatic Cells Isolation or Extraction
Pancreas was removed using the forceps and 
mashed through the cell strainer into the petridish 
containing (0·1) M phosphate buffer saline (pH 7·2) 

in presence of trypsin- EDTA and tryton X 100. Cell 
suspension was subjected for centrifugation at 800xg 
for 3 minutes. Supernatant was discarded and pellet 
was resuspended in PBS. Cell suspension was 
taken for study.

Trypan Blue Dye Exclusion Test
Cells were treated with trypan blue dye solution for 
5 minutes and observed under a light microscope 
and mortality index was calculated.

                                

Glucose Tolerance Test (GTT)
Blood was collected from the tail veins of control 
and mercury treated rats for glucose tolerance test 
(GTT) by glucometer (Accu Chek Active Strip 25S) 
(Chakrabarti et al., 2007; Guria et al., 2012 and 2014; 
Guria, 2017 and 2018).

Results and Discussion
Histopathological Findings of Pancreas and 
Analysis of Pancreatic Cells
Histopathology of islets of Langerhan's of pancreas 
of control animal revealed normal architecture 
with compact arrangement of cells. The islets 
seemed lightly stained than the surrounding acinar 
cells (Fig. 1A). Photomicrograph of histology of 
treated pancreas exhibited the disruption of islets, 
disorientation of cells and disruption of connective 
tissue septa (Fig. 1B). 

Photographs of control giemsa stained pancreatic 
cel ls showed intact nuclei and membrane  
(Fig. 1C). In treated group pancreatic cells were 
found to be pyknotic and cellular death was 
confirmed by membrane rupture, necrosis and 
nuclear degeneration (Fig. 1D). Trypan blue (TB) 
positive response was noticed in majority of treated 
pancreatic cells (Fig. 1E).

Histopathological Findings and Analysis of Liver
Control liver tissues showed normal cytoarchitecture 
with visible central veins with radiating cords 
of hepatocytes (x100) (Fig.2A). The treated 
liver sections exhibited necrosis of hepatocytes, 
disruption of central canal, dilated sinusoidal spaces 
(Fig. 2B), central vein and vessel congestions (Fig. 
2C) and periportal fatty infiltration (PFI) (Fig. 2D).
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Fig. 1. (A) H-E stained section of control rat pancreatic islets showed normal cyto architecture (as 
indicated by arrows) (x400). (B) Notice the dilated interlobular connective tissue (CT) septa and 

degenerated islet’s cells with pyknosis in treated pancreatic islets (as indicated by arrows).

(Fig. 1A) (Fig. 1B)

Fig. 1. (C) Giemsa stained control rat pancreatic cells showing intact nuclei and membrane (as 
indicated by arrows) (x400).

(Fig. 1C) 

Fig. 1. (D) Pyknotic pancreatic cells in treated rat group showed membrane rupture, necrosis and 
nuclear degeneration (x400). (E) Treated rat pancreatic cells displaying trypan blue (TB) positive 

response (as indicated by arrows) (x400).

(Fig. 1D) (Fig. 1E)
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Fig. 2. (A) H-E stained section of normal cyto architecture rat liver with visible central veins with 
radiating hepatocytes (as indicated by arrows) (x 100). (B, C, D) H-E stained section of treated rat 
liver exhibited necrosis of hepatocytes, disruption of central canal, dilated sinusoidal spaces and 

central vein congestions (as indicated by arrows)  (x 400).

(Fig. 2A) (Fig. 2B)

(Fig. 2C) (Fig. 2D)

PAS analysis of liver
Liver section of treated group showed vacuolisation 

in the liver parenchyma. Treated liver showed lower 
(periodic acid/Schiff) PAS response (Fig. 3B). 
 

Fig. 3. (A) PAS stained section of normal rat liver (x 400). (B) PAS stained section of treated rat 
liver (x 400). Notice the vacuolisation in the liver parenchyma in treated group (as indicated by 

arrows).

(Fig. 3A) (Fig. 3B)
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Blood Glucose L	evel
The increased glucose level in treated rat didn’t 

return to control level even after 24 hr of glucose 
challenge (Fig. 4).

Liver and pancreas tissues both act as glucose 
sensor for diabetes mellitus (DM). In present study, 
histopathological examination of treated pancreas 
and liver showed the morphological alteration. 
Persistence of hyperglycemia was noticed in treated 
rat.

Chen et al., 2009 stated that islet cells were 
extremely sensitive to heavy metals due to high 
expression of metal transporters and low expression 
of antioxidants resulting in pancreatic islet β-cell 
dysfunction (Chen et al., 2009). Recent study 
evidenced that mercuric compounds (MeHgCl 
and HgCl2) caused pancreatic islet dysfunction by 
apoptosis [increasing apoptotic (p53, caspase-3) 
related gene expressions] and ROS generation in 
treated mice (Chen et al., 2012). 

The detrimental effects of mercury act as negative 
regulators of insulin signaling and resistance by 
producing Reactive Oxygen Species (ROS) in cells 
(Durak et al., 2010; Bashan et al., 2009). Previous 
researches have also shown that group IIb metals 
(cadmium, mercury and zinc) modulates glucose 
transport in target cells (Barnes et al., 2003). Barnes 
and Kircher (2005) stated that pre-treatment with 

HgCl2 diminished glucose transport (Barnes and 
Kircher, 2005). 

Guria, 2018 showed that the pancreatic sections 
and liver of the arsenic treated rat group exhibited 
marked morphological changes. Significant number 
of treated liver cells exhibited higher NBT (Nitroblue 
Tetrazolium) positive response (Guria, 2018). 
Alteration of glucose homeostasis was observed in 
arsenic treated rat (Guria, 2018). Guria et al., 2016 
revealed that chromium (VI) had deleterious effect 
on the ultrastructure of pancreas as well as liver 
(Guria et al., 2016). 

Conclusion 
Recent study evidenced that mercuric compounds 
(MeHgCl and HgCl2) caused pancreatic islet 
dysfunction. This observation was consistent with 
earlier observations on genotoxic potential of 
mercury (II) chloride in liver, pancreas and other 
tissues. 

The high expression of metal transporters in islet 
β-cells makes the islet cells extremely sensitive 
to the toxic effects of heavy metals, resulting in 
pancreatic islet β-cell dysfunction. Pancreatic islet 

Fig. 4. In the control rats the blood glucose level returned to the normal level after 24 hr of 
glucose feeding. Like control rats, in treated rats glucose level increased after 1.5 hr of glucose 

challenge but the elevated glucose didn’t return to control level even after 24 hr of glucose 
challenge. Blood glucose level [mg/dl (milligrams per decilitre)] was measured during GTT.  

Values are expressed as mean ± SE.
P-value < 0.05 is considered to be statistically significant.

(Fig. 4)
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β-cell degeneration and insulin resistance are 
the hallmark of Type2 diabetes mellitus, and thus 
heavy metals that reduce the function of β-cells are 
therefore highly relevant to T2D risk (Zheng et al., 
2018; Edwards and Ackerman, 2016).

The result of present study corroborated the previous 
studies (Guria et al., 2016; Guria, 2018).

Therefore metal like mercury induced alteration of 
pancreas and liver may persuade the condition of 
diabetes mellitus. But further studies are needed to 

examine heavy metal exposures as risk factors for 
diabetes mellitus (DM).
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