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ABSTRACT

	 The efficiency of applying linear regression (LR) and artificial neural network (ANN) models 
to estimate inside air temperature (T) of a glasshouse (37048´20´´N, 23057´48´´E), Lavreotiki, was 
investigated in the present work. The T data from an urban meteorological station (MS) at 37058´55´´N, 
23032´14´´E, Athens, Attica, Greece, about 30 Km away from the glasshouse, were used as predictor 
variable, taking into account the actual time of measurement (ATM) and two hours earlier (ATM-2), 
depending on the case. Air temperature data were monitored in each examined area (glasshouse 
and MS) for four successive months (July-October) and averages on a two-hour basis were used for 
the aforementioned estimation. Results showed that ANN were better than LR models, considering 
their better performance as shown in the scatterplots of the distribution of observed versus estimated 
inside T data of the glasshouse, in terms of both higher coefficient of determination (R2) and lower 
mean absolute error (MAE). The best ANN model (highest R2 and lowest MAE) was achieved by 
using as predictor variables the T at ATM and the T at ATM-2 from MS. The findings of our study may 
be a first step towards the estimation of inside T of a glasshouse in Greece, from outside T data of 
a remote MS. Thus, the operation of the glasshouse could be improved noticeably.
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INTRODUCTION

	 The growth of plants inside glasshouses is 
often necessary in order to create marketable plant 
products out of season. Glasshouses are entirely 
or partially closed constructions, in which there is 
manual or automatic control and regulation of the 
values of meteorological parameters for fulfilling 
the requirements of the cultivated plant species1. 
One of the key factors that impacts glasshouse 
plant production is inside air temperature (T) 2. The 
estimation of this parameter has been reported to be 
of high importance to help growers to manage crop 
production and designers to improve the ventilation 
and heating systems3.

	 Therefore, from both a theoretical and a 
practical point of view, a lot of attempts have been 
made to estimate the inside T of a glasshouse, 
presenting a variety of statistical models, for 
example, linear auto regressive models with external 
input (ARX) and auto regressive moving average 
models with external input4, ARX combined with 
neural network architectures5, partial least-square 
regression and back-propagation neural network6, 
with higher or lower degree of accuracy.

	 One robust computational technique, 
the artificial neural network (ANN) model7, can be 
used successfully for the estimation of inside T of 
a glasshouse, as it has been confirmed by several 
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studies, e.g. Salazar et al.8 and Alipour and Loghavi9. 
This model coincides with a great potential of 
complex, non-linear and time-varying input-output 
mapping10. The use of ANNs for the estimation of 
inside T of glasshouses is limited, especially when 
using the outside T of a remote meteorological station 
(MS) as a predictor variable. To our knowledge, only 
some preliminary tests (unpublished data) have been 
made by the authors of the present work.

	 Our present work aims to investigate the 
hypothesis of satisfactory performance of ANNs, 
regarding the estimation of inside T of a glasshouse, 
based on outside T data of a remote MS. Moreover, 
the performance of selected linear regression (LR) 
models was evaluated and compared to that of the 
ANNs. In both cases, we used the scatterplots of the 
distribution of observed versus estimated inside T 
data, along with the coefficient of determination (R2) 
and the mean absolute error (MAE) to evaluate the 
results. 

MATERIALS AND METHODS

	 The field experiment was conducted in 
two places. The first place was a MS (37058´55´´N, 
23032´14´´E) in the highly populated urban region 
of the municipality of Athens, and the second one 
was a glasshouse (37048´20´´N, 23057´48´´E) in the 
municipality of Lavreotiki, in the prefecture of Attica 
of southeast continental Greece. There was one 
examined site (S1) at the MS and one examined 
site (S2) inside the glasshouse, about 30 Km away 
from S1. The S2 site was located in a non-shaded 
plot, where there was an ornamental plant cultivation 
according to Matsoukis et al11.  In brief, this plot had 
an open vertical side, with the other three vertical 
sides being covered by white opaque plastic sheets 
of polypropylene (model Velliflor of Vellis A.E. 
company, Greece). The same type of sheet was 
used to cover the ground surface for the prevention 
of weed emergence.

	 Air temperature data at S2 were monitored 
every 10 min, by a sensor (model 809 L 0-100, 
Wilh. Lambrecht, GmbH, Germany; accuracy ±0.3o 
at 0o) and recorded by a datalogger (model 903; 
Wilh. Lambrecht, GmbH, Germany).  The sensor 
was placed at a height equal to the top of the plant 
canopies, for four successive months (July-October). 

Air temperature averages were calculated on a two-
hour basis. Simultaneously, and on the same time 
basis, T averages were calculated by the recorded T 
data of the MS12, for the same period. The T averages 
of both glasshouse (S2) and MS (S1) were used for 
the estimation of the inside T of the glasshouse, with 
the aid of simple linear (SLR) and multiple linear 
regression (MLR) models, as well as ANN models, 
as determined by many preliminary tests. Finally, 
to estimate the inside T at S2, based on the data 
from S1, four models were distinguished from the 
others, in terms of higher R2 and lower MAE. These 
models were named A, B, C and D. In model A, a 
SLR analysis was used, while in model B, a MLR 
analysis was adopted. Regarding models C and D, 
custom multilayer perceptrons (MLPs), which belong 
to the most commonly used ANN architectures13, 
were used.

	 More specifically, the SLR analysis is 
defined by the equation: 

		  y = α + βx	 (1) 

	 where y is the dependent variable, x the 
independent variable, and a, b the Y-axis intercept 
and the slope, respectively. In model A, the inside T of 
the glasshouse (dependent variable) was estimated, 
using the T of the MS, as independent variable, for 
the actual time of measurement (ATM). The MLR 
analysis is defined by the equation:

	  y = α + β1x1 + β2x2 +···+ βnxn	  (2) 

	 where x1, x2,…,xn: independent variables, 
α: Y-axis intercept and β1, β2,…,βn: regression 
coefficients. Each regression coefficient represents 
the contribution of the respective independent 
variable to the prediction of the dependent 
variable. In model B, the T at site S2 (dependent 
variable) was estimated, using the T of S1  
(first independent variable), at actual time of 
measurement (ATM), and the T of S1 two hours 
earlier (ATM-2), as second independent variable.

	 One of the most commonly used ANN 
models for T estimation, MLP, was chosen to be used 
for the present study. A major consideration when 
using MLPs for model building is the determination 
of the optimal architecture of the network, that is, the 
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number of inputs, number of layers and number of 
nodes per layer. To solve this problem, a trial-and-
error method was used, the most common strategy 
to test many various alternative models, in order 
to keep the best performing network. It was found 
that for model C the best architecture was 1-6-1, 
that is, an input layer of 1 unit, (T of S1 at ATM) a 
hidden layer of 6 units and an output layer of 1 unit 
(estimated T of S2). In a similar way, for model D the 
best architecture was found to be 2-7-1, that is, an 
input layer of 2 units (T of S1 at ATM and T of S1 
at ATM-2), a hidden layer of 7 units and an output 
layer of 1 unit (estimated T of S2, in this case). For 
both ANNs, the connections between the layers were 
feedforwarded and their weights and thresholds were 
determined by the training procedure of the neural 
network. The training set consisted of half of the data, 
the selection set of a quarter of the data and the test 
set of the remaining quarter of the data, randomly 
assigned14. After the proper training of the networks, 
we took into consideration only the test data set to 
determine the testing parameters (R2, MAE) and 
compare the estimation models.

	 In order to evaluate the performance of the 
results obtained by LR and MLP models, two widely 
used criteria were used; the R2 between observed 
and estimated T values at site S2 and the MAE of 
the estimated T values. The MAE is the average of 
the absolute errors after each model was applied 
and it is, side by side with R2, a way to examine the 

overall efficiency of the models. The more efficient 
the model is, the higher the R2 is and the lower the 
MAE is, which is the desirable goal. Examining the 
statistical significance of the parameters of LRs 
and MLPs, special attention needs to be given in 
the output P value. This value plays a major role in 
determining the parameters, which will be used in 
the various models so as to eliminate deficiencies. 
In the present study, it was ensured that the results 
were significant at P<0.05.

RESULTS AND DISCUSSION

The results of the application of A, B, C and D 
models, in terms of scatterplots of the distribution 
of observed versus estimated T data for the site S2, 
are shown in Figures 1 and 2. The model with the 
worst performance was the simplest one, model 
A, derived from SLR analysis, due to the lowest 
R2 and highest MAE (Figure 1a), compared to the 
other applied models. The model B, based on MLR 
analysis, showed a better performance than the 
previous one (A), and this improvement was justified 
by the higher R2 and the lower MAE (Figure 1b). The 
additional input of the T of S1 at the time ATM-2 
was the critical factor for this improvement. Similar 
results have been reported by Chronopoulos et al.15 
with regard to the estimation of T in a canyon in a 
National Forest in Greece. The model C, based on 
MLP with one input parameter (T of S1 at ATM), 
as it can be seen in Figure 2a, showed a slightly 

Fig. 1: Scatterplots of observed versus estimated air temperature (o) data for
models A (a) and B (b). R2 : determination coefficient, MAE: mean absolute error
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better performance than model B, due to the lower 
MAE, although R2 remained unchanged. The more 
sophisticated model, D, based on MLP method, in 
which the input parameters were both T at ATM and 
T at ATM-2 of S1, produced better results than any 
other model we tested, in terms of the highest R2 and 
lowest MAE (Figure 2b). It has been reported that 
the introduction of ATM as an input in ANN models, 
produces better results in an urban area, concerning 
the estimation of T.13

	 The ability of the ANNs to take into account 
the nonlinear characteristics of the T data, produced 
better results than the LRs models, especially when 
we used combined input of the same data with a time 
lag of two hours. This clear improvement when using 
time lag can possibly be explained by the distance 
of the two sites, combined with the influence of the 
terrain profile. It should be noted that the terrain 
profile results in different sunrise and sunset times 

which vary more than one hour at the two examined 
sites.

	 In conclusion, the analysis of the results 
after the application of SLR, MLR and MLP models, 
with or without time lag, clearly showed that the 
MLP models were better than the SLR and MLR 
models, considering their better performance based 
on the scatterplots of the distribution of observed 
versus estimated inside T data for the glasshouse, 
the higher R2 and the lower MAE. From the two 
examined MLP models, model D, in which the input 
parameters were T at ATM and T at ATM-2, had 
better performance based on the aforementioned 
scatterplots, the highest R2 and the lowest MAE. 
Therefore, the examined MLP model with time lag 
of minus two hours could be beneficial, as a first 
step, for the estimation of inside T of a glasshouse 
in Greece, using the outside T of a remote MS. This 
estimation could be a valuable tool for more efficient 
operation of the glasshouse.

Fig. 2: Scatterplots of observed versus estimated air temperature (o) data for
models C (a) and D (b). R2 : determination coefficient, MAE: mean absolute error
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