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AbstRACt 

 The process of evapotranspiration (ET) is a vital part of the water cycle. Exact estimation 
of the value of ET is necessary for designing irrigation systems and water resources management. 
Accurate estimation of ET is essential in agriculture, its over-estimation leads to cause the waste of 
valuable water resources and its underestimation leads to the plant moisture stress and decrease 
in the crop yield. The well known Penman-Monteith (PM) equation always performs the highest 
accuracy results of estimating reference Evapotranspiration (ET0) among the existing methods is 
without any discussion. However, the equation requires climatic data that are not always available 
particularly for a developing country. ET0 is a complex process which is depending on a number of 
interacting meteorological factors, such as temperature, humidity, wind speed, and radiation. The 
lack of physical understanding of ET0 process and unavailability of all appropriate data results in 
imprecise estimation of ET0. Over the past two decades, artificial neural networks (ANNs) have been 
increasingly applied in modeling of hydrological processes because of their ability in mapping the 
input–output relationship without any understanding of physical process. This paper investigates for 
the first time in the semiarid environment of Junagadh, the potential of an artificial neural network 
(ANN) for estimating ET0 with limited climatic data set.

Keywords: Artificial neural network, Evapotranspiration, Reference evapotranspiration,
Feed forward back-propagation, Penman Monteith equation.

iNtRODuCtiON 

 In semi arid regions, water resources 
management is a crucial requirement for increasing 
agricultural production because food insecurity is 
becoming a main concern. ET is one of the hydrologic 
cycle components and the precise estimation of ET 
is very important for the researches such as water 
balance, irrigation design and management, crop 
yield modelling, and water resources planning and 

management reported by Kumar et al.5 (2002). ET0 
can be obtained by many estimation methods, but 
Shih et al.6 (1983) reported that the factors such as 
data availability must be considered when choosing 
the ET0 calculation technique. The Penman-Monteith 
method is maintained as the single standard method 
recommended by the FAO for the computation 
of ET0 from complete meteorological data [Allen 
et al.2 (2006); Smith et al.7 (1990)] but, the main 
shortcoming of the FAO 56 PM method is, it requires 
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large number of climatic parameters that are not 
always easily available for many locations. Several 
models such as Hargreaves and blaney-Criddle 
and other models have been proposed to predict 
ET0, but Traore et al.8 (2008) reported that, these 
models do not have universal consensus for different 
climatic conditions. ET0 is a complex process which 
is depending on several interacting climatological 
factors, such as temperature, humidity, wind speed, 
and radiation. The lack of physical understanding of 
ET0 process and unavailability of all relevant data 
results in inaccurate estimation of ET0. Over the 
past two decades, artificial neural networks (ANNs) 
have been used more and more in modeling of 
hydrological processes because of it has ability in 
mapping the input–output relationship without any 
understanding of physical process. The feed-forward 
multi-layer perceptron (MLP) is widely adopted ANN 
in most of the studies on hydrological modeling. 
ANNs are capable of modeling complex nonlinear 
processes effectively extracting the relation between 
the inputs and outputs of a process without the 
physics being explicitly provided to them and also, 
they identify the underlying rule even if the data is 
noisy and contaminated with errors, suggested by 
ASCE3 (2000a) and ASCE4 (2000b).

 Accurate estimation of Evapotranspiration is 
more important for water users, for parameterization 
of important hydrologic and water resources 
planning and operation models, for operating 
weather and climate change forecasting models, 
forecasting of drought and its monitoring, effective 
development and utilization of water resources, water 
management and allocation in water-scarce regions, 
including the partitioning of water resources among 
states and nations. There are lots of different kinds 
of Evapotranspiration estimation methods.  Those all 
methods are based on existing hydrological models 
and their meteorological data input requirements. 
The goal of this study is to develop the ANN based 
models which perform close to FAO 56 PM estimates 
and required less meteorological data because in 
un-gauged basins the meteorological information 
is generally unavailable. In such circumstances 
models requiring low meteorological data which 
yield accurate results whereas intensive data 
requiring models cannot be adopted due to lack of 
meteorological information. 

MAtERiAL AND MEthODs 

study area
 Reference evapotranspirat ion was 
estimated for Junagadh, Gujarat, India. Study region 
falls under south Saurashtra zone agro climate zone. 
Junagadh has bearings of 69.40° to 71.05 ° East 
Longitude and 20.44 ° to 21.40 ° North Latitude with 
83 m above MSL (Mean Sea Level). The climate of 
the area is categorized under subtropical and semi-
arid with an average annual rainfall of 900 mm and 
average pan evaporation of 6.41 mm/day. May is the 
hottest month with mean weekly pan evaporation of 
10.95 mm and mean monthly temperature varying 
between 35°C to 45°C. January is the coolest month 
with mean monthly minimum temperature varying 
between 7°C to 10°C. About 95% of the total rainfall 
is received during monsoon months only.

Description of input weather parameters 
 In the present study daily meteorological 
data for the period of January 1984 to December 
2012 years was collected from Agro-meteorological 
observatory, Junagadh Agricultural University, 
Junagadh, and were used to estimate reference 
evapotranspiration. Four meteorological parameters 
temperature, wind speed, bright sunshine hours, 
relative humidity have been collected for a period of 
twenty nine years. In some models the solar radiation 
was used instead of bright sunshine hours for finding 
the effect in estimating reference ET.

Penman-Monteith Equation 
 The FAO Penman–Monteith method was 
developed by defining the reference crop as a 
hypothetical crop with an assumed height of 0.12 
m having a surface resistance of 70 s m-1 and an 
albedo of 0.23, closely resembling the evaporation 
of an extensive surface of green grass of uniform 
height, actively growing and adequately watered. 
The FAO Penman-Monteith method for calculating 
reference (potential) evapotranspiration ET can be 
expressed as Allen et al.1 (1998):
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 Where, ET0 is reference evapotranspiration 
[mm day-1], Rn is net radiation at the crop surface [MJ 
m-2 day-1], G is soil heat flux density [MJ m-2 day-1], Ta 
is mean daily air temperature at 2 m height [°C], u2 
is wind speed at 2 m height [m s-1], es is saturation 
vapour pressure [kPa], ea is actual vapour pressure 
[kPa], (es - ea) is saturation vapour pressure deficit 
[kPa], Ä is slope vapour pressure curve [kPa °C-1], 
and  ã is Psychrometric constant [kPa °C-1].

ANN Architecture
 The number of nodes in the input layer 
depends on the number of climatic variables used 
in estimating ET0. The individual node in the input 
layer corresponds to respective variables. Thus, the 
number of nodes in the input layer varies according 
to the climatic data requirement of the model. The 
decision maker must specify the number of hidden 
layers and neurons in each hidden layer. In this 
study single hidden layer is used to develop the ANN 
models.

 The available data are commonly split 
in three separate data sets: (1) the training set, 
(2) the cross-validation set, and (3) the validation 
set. The total available data is divided into three 
main categories, twenty three years (1984-2006) 
data is used for training and cross validation of 
the model; and the remaining data is applied for 
testing of model. Remaining six years (2007-2012) 
data were applied for testing of the model. Trial and 
error method is applied for weighing and training 
the model to achieve the desired target. The model 
is implemented using MATLAb. Feed forward and 
back Propagation Algorithm was applied for the 
model development. The neural network structure in 
this study possessed a three-layer learning network 
consisting of an input layer, a hidden layer and an 
output layer. Each layer composed of a number of 
processing nodes called neurons with connections 
linking the nodes in successive layers. Fig. 1 
shows the mathematical representation of typical 
configuration of a bP used in this study for modeling 
the ET0 process. 

Data normalization  
 For data standardization, the data of input 
and output nodes were scaled in the range of [0 1] 
using the following equation 

table 1: Different input combinations for 
regression model development

input  Name of  Output
combinations models

Ta Model-1 ET0 (PM)
Rh Model-2 ET0 (PM)
W Model-3 ET0 (PM)
N Model-4 ET0 (PM)
Rs Model-5 ET0 (PM)
RhW Model-6 ET0 (PM)
RhN Model-7a ET0 (PM)
RhRs Model-7b ET0 (PM)
WN Model-8a ET0 (PM)
WRs Model-8b ET0 (PM)
TaN Model-9a ET0 (PM)
TaRs Model-9b ET0 (PM)
TaRh Model-10 ET0 (PM)
TaW Model-11 ET0 (PM)
TaWN Model-12a ET0 (PM)
TaWRs Model-12b ET0 (PM)
RhWN Model-13a ET0 (PM)
RhWRs Model-13b ET0 (PM)
TaRhN Model-14a ET0 (PM)
TaRhRs Model-14b ET0 (PM)
TaRhW Model-15 ET0 (PM)
TaRhWRs Model-16a ET0 (PM)
TaRhWN Model-16b ET0 (PM)

(Ta = mean air temperature in °C, Rh = mean 
relative humidity in %, W = wind speed in m/
sec, N = bright sunshine hours in hr, Rs = solar 
radiation in MJ/m2/day)
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 Where, ynorm = the normalized dimensionless 
data of the specific input node; yi = the observed data 
of the specific input node; ymin = the minimum data 
of the specific input node; and ymax = the maximum 
data of the specific input node.

Applying neural networks to Et0

 Daily mean temperature (Ta) and relative 
humidity (Rh), wind speed at 2 m level (W), maximum 
and minimum temperatures (Tmax, and Tmin) and total 
solar radiation (Rs) have been used as input-data for 
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table 2: Various evaluation criteria used in the present study

sr. No. statistical parameters Eq. No. statistical parameters Eq. No.
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Fig. 1: Mathematical representation of neural network
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Fig. 2: Monthly comparison of FAO 56 PM Et0 and different 
combination based ANN models predicted Et0 during the testing period
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Penman-Monteith equation. The main input variables 
accounted for ANN include mean air temperature, 
mean relative humidity, wind speed, solar radiation 
and sunshine hours. The aim of the present study 
was to explore the potential of the ANN model for 
predicting ET0 of the study area at monthly time 
scale. Then in order to best network configuration 
determined was used to train and test several other 
input combinations represented in table 1 in order 
to apprehend the potential input variables affecting 
the ET0 process. This may help to understand the 
weather influence on ET0. Estimated ET0 calculated 
by using the PM method (FAO 56) for monthly time 
scale were considered the output for all ANN models. 
MODEL -1 to MODEL -5 has only one variables 
defined above. In this effect of individual variable on 
reference ET was analyzed. The extraterrestrial solar 
radiation is not a collected data but determined for 
a certain day and location of the Allen et al. (1998) 
procedure. The input structures of MODEL -6 to 
MODEL -11 are formed by inserting combination of 
two variables out of five. Then, the model of MODEL 
-12a to MODEL -15 integrated three variables out 
of five mainly mean air temperature, mean relative 
humidity, wind speed, solar radiation and sunshine 
hours. Finally all the parameters are integrated in 
the MODEL 16a and MODEL 16b predict the PM 
reference evapotranspiration. 

Performance evaluation criteria
 In this section, other error measures are, 
therefore, employed to quantify these deficiencies. 
The efficiency criteria used in this study are Root 
mean square error (RMSE), Nash-Sutcliffe efficiency 
(EF), coefficient of determination (R2), Coefficient of 
residual mass (CRM), Absolute error (AE), Akaike 
information criteria (AIC), bayesian information 
criteria (bIC) and Mean square error (MSE), 

Adjusted R2. A brief of the above criteria is presented 
in the Table 2.

REsuLts AND DisCussiON 

 Table 3 and 4 shows the different 
performance indices of all combination based ANN 
models during training and testing respectively. 
From the tables and graphs one can say that after 
replacing the (Rs) in the place of bright sunshine 
hours (N), the performance of that relevant model 
is increased up to appreciable level. From the one 
input based models Rh based model gave very 
poor performance similarly, RhN and RhWN also 
gave poor performance from the two and three 
input combinations based models respectively. 
Performance of one input based models can be 
arranged in increasing order is Rh, W, N and Ta. 
Similarly, RhN, TaW, RhW, WN, TaN, RhRs, TaRs 
and WRs for two input combination based models 
and RhWN, TaRhN, TaRhRs, TaRhW, TaWN, RhWRs 
and TaWRs for three input combinations based 
models can be arranged in increasing order as per 
performance indices. Four input combination based 
models achieve the highest model efficiency.

CONCLusiON

 Study revealed that, the model-5 (Rs based) 
gave good result from one input combination based 
models. Similarly, model-8b (WRs), model-13b 
(RhWRs) and model-16a (TaWRhRs) performed 
excellent (near to PM FAO-56) from two, three 
and four input combination based ANN models for 
estimating monthly reference evapotranspiration for 
given area respectively. Solar radiation (Rs) is more 
accurate then the bright sunshine hours (N) for the 
estimation of ET0.
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