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ABSTRACT

 Side weirs are used in open channels to control flood and the flow passing through it. 
Discharge capacity is one of the crucial hydraulic parameters of side weirs. The aim of this study 
is to determine the effect of the intended dimensionless parameters on predicting the discharge 
coefficient of triangular labyrinth side weir. MAPE, RMSE, and R2 statistic indexes have been used 
to assess the accuracy of the results. The results of the examinations indicate that using MLP model 
along with simultaneous use of dimensionless parameters for the purposes of estimating discharge 
coefficient: the ratio of water behind the weir to the channel width (h/b), ratio of weir crest length to 
weir height (L/W), relative Froude number (F=V/”(gy)) and vertex angle (ô), offered the best results 
(MAPE= 0.67, R2= 0.99, RMSE = 0.009)  in comparison with other models. 

Key words: Triangular labyrinth side weir, Discharge coefficient,
Dimensionless parameters, ANN-MLP model.

INTRODuCTION

 Side weirs are amongst hydraulic structures 
used for varied purposes in water transfer systems, 
irrigation networks, drainage, surface water collection 
systems, sewers and wastewater discharge ducts, 
and water and sewerage treatment plants. Diverting 
surplus discharge in rivers and channels is among 
other applications of side weirs. Moreover they are 
constantly and widely used for specific impounding of 
rivers or channels. The flow in the weirs is a spatially 
varied flow (Borghei, 2011). A spatially varied flow is 
a type of permanent flow in which the flow intensity 
increases or decreases in the channel along the flow 
direction. When the flow is a spatially varied flow it 
decreases along the path as discharge decreases, 
which is basically a diverted flow (DeMarchi G, 1934). 
Labyrinth and normal side weirs are among different 
types of weirs. Labyrinth weirs are constructed in a 
spiral manner so that they will create a larger weir 
crest length in comparison with the normal weirs. 
This increases the passing discharge in comparison 

to a normal weir with similar head and similar side 
space. Labyrinth side weirs are used as a structure 
to better overflow the flow in larger containers and it 
allows the overflow threshold to increase when the 
water is at its maximum level. Labyrinth weirs could 
be sharp- crested and broad- crested and normal 
weirs are built in varied shapes such as rectangle, 
triangle, trapezium, circle, and … (Kumar et al., 2011; 
Wormleaton and Tang, 2002; Emiroglu and Baylar, 
2005).

 DeMarchi (1934) solved the dynamic 
equation of discharge- decreasing spatially varied 
flow for the first time in 1934 for rectangular horizontal 
channels when the friction can be overlooked with 
the premise that the energy is constant along the 
weir. Subramanya and Awasthy (1972) studied the 
general differential equation of spatially varied flows 
with decreasing discharge in a horizontal rectangular 
channel and presented a number of equation for 
discharge coefficient for the sharp- crested side 
weirs through conducting a series of experiments 
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on subcritical and supercritical flows. They also 
measured the velocity profiles and demonstrated 
that the rectangular side weir will have a significant 
effect on velocity distribution near the weir.

 Considering the complexity of engineering 
problems and growing engineering studies, new 
methods called soft calculation were significantly 
used during recent decade which showed more 
efficient and more accurate to solve complicated and 
difficult engineering issues. Emiroglu et al. (2009) 
were able to obtain the discharge coefficient of 
triangular weirs through using (ANFIS) fuzzy neural 
network. The discharge coefficient is dependent on 
the geometrical parameters of the main channel and 
the weir in the model presented by them . Kisi et al. 
(2012) were able to obtain the discharge over the 
triangular weir through using neural network (ANN). 
The upstream weir Froude number, the weir length, 
the main channel width, the weir height, the angle 
of the apex of the triangular weir, and the upstream 
water height were the parameters affecting the 
discharge coefficient in their study .

 Bilhan et al. (2010) succeeded in developing 
the  neural network(ANN) method and obtaining the 
discharge coefficient of rectangular weirs through 
other neural network models. These models include: 
FFNN and RBNN models. Dursun et al. (2012) 
conducted their studies on elliptical weirs and were 
able to obtain an equation for discharge coefficient 
in such weirs. They utilized the (ANFIS) fuzzy neural 
network in their examinations and compared the 
results with that of other methods .

Multi-layer neural network (ANN-MLP) is one of 
the methods taken in to use in water hydraulic 
engineering during recent years. One of the benefits 
of this method which can be pointed out is the 
desirable performance of it in analyzing complex 
flows (Kisi, 2008; Bonakdari et al., 2011; Baghalian 
et al., 2012; Donmez, 2011; Huai et al., 2013).

 The main purpose of the present study 
is to predict discharge coefficient through using 
the MLP method. The factors influencing the 
determination of discharge coefficient were first 
specified through using sensitivity analysis in order 
to fulfill the purpose of this study. Six models are then 
presented considering each of these dimensionless 

parameters. And then the discharge coefficient has 
been predicted through training and testing the MLP 
network for each of the presented models. RMSE, 
MAPE, and R2 statistical parameters were finally 
used to compare the six above- mentioned models. 
The best and most effective parameters in predicting 
the discharge coefficient will be introduced at the 
end. 

Experimental Model (Kumar et al, (2011))
 Present study used Kumar et al, (2011) 
experimental data to estimate discharge coefficient. A 
horizontal rectangular channel with 12 meter length, 
0.28 m width and 0.41 meter height was used in the 
experiments. The weir used was a triangle located 
11 meter away from channel entrance. Water height 
over weir crest was measured by point gages having  
±0.1 mm accuracy. To create edge flow over the weir, 
air conditioning pits were used. Network walls and 
wave preventers were structured to eliminate the 
vertex and water surface disturbance. Table 1 shows 
the parameters used in present study.

Multi-Layer Neural Network
 The Multi-layer neural network is considered 
one of the soft computing methods. One of the 
benefits of this method which can be pointed out is 
the desirable performance of it in analyzing complex 
flows. Also the nonlinear models of current can 
also be studied through this method. The basis of 
the process in this method is training and learning 
processes. The components of the structure of 
artificial neural network(ANN) include: hidden layers, 
hidden units and hidden neurons, input layer, output 
layer ( Yang and Chang, 2005; Smith, 1993). 

 The flexible structure of artificial neural 
network (ANN) makes it capable of modeling 
complex and nonlinear patterns between input and 
output data. The capability to estimate the accurate 
results is done through using input data on the basis 
of training and learning process. What is meant by 
training the neural network is to obtain the weights 
(w) of the network. Also classifying different types 
of ANN is done based on the methods of obtaining 
the weights and also the utilized transfer functions. 
One of the various types of neural network which is 
used frequently is Multilayer Perceptron (MLP). An 
MLP feed forward includes an input layer, one or 
more hidden layers and an output layer (Figure 2). 
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Each layer is made up of a number of neurons the 
number of neurons in the input and output layers 
are equal to the number of inputs and outputs of 
the under- study issue respectively. Various types of 
functions could be considered as sigmoid function, 
hyperbolic tangent was used as activation function in 
the hidden layers in this study. Levenberg- Marquardt 
method was used for training of ANN (Melesse et al., 
2011; Van Maanen et al., 2010). Back- propagation 
algorithm, which is one of the most beneficial 
algorithms, is used in this method in order to figure 
out the weights and bias of the neural network. This 
algorithm minimizes the difference between the 
observed outputs from the experimental studies 
and the ANN model outputs very quickly through 
determining weights and bias.

 The modeling and simulation of ANN-
Multilayer Perceptron (MLP) was written by matlab 
programming language in this study. In order to 
analyze and solve a neural network which has two 
hidden layers and in order to determine the number 
of the existing neurons in each layer, trial and error 
method was used. The functions and equations 
which are analyzed for the output layer are linear, ( 
Bilgil  and Altun,  2008; Asadi et al., 2013; Bilhan et 
al., 2011).

 The way the trial and error method works is 
that various runs are taken in order to determine the 
number of neurons of the layers of the neural network 
in case the number of the neurons are not equal in 
the first and the second layer and then the RMSE 
error is determined for each of them separately and 
the state which has the least amount of error will 
be selected as the base for modeling ANN. These 
parameters (model 1-6) are placed in the first layer 
of the neural network as the input parameters. The 
neural network will be trained through a number 
of these parameters within the middle layer in the 
following stage so that they could gain their optimum 
structure and after reaching the already- determined 
stopping point, the training process will stop. As said 

earlier the purpose of the structured neural network 
is to estimate the discharge coefficient.

METHOD

 Through examining the studies conducted in 
the field of discharge coefficient it could generally be 
states that the dependent Cd parameter is dependent 
on the ratio of water behind the weir to the channel 
width (h/b), the ratio of the weir crest length to the 
water height behind the weir (L/h), the ratio of the weir 
crest height to the weir height (L/w), the approximate 
Froude number (F=V/”(gy)), and the vertex angle (è) 
independent dimensionless parameters. Therefore 
the six models could be presented as below through 
using the presented dimensionless parameters. It 
could be seen that model number 1 includes all the 
presented dimensionless parameters and models 
2 to 5 examine the effect of not considering each of 
the presented dimensionless parameters. 
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 In order to verify the accuracy of the 
estimated model, at each step of model development, 
the results of analysis of MLP for each model is 
based on the criteria of coefficient of determination 

Table 1: Parameters used to estimate average discharge coefficient (Kumar et al, 2011)

 h/b L/h F L/w θ (degree) Cd

min 0.260714 135.25 0.608 11.76087 30 0.54
max 0.028571 3.888889 3.261 2.685185 180 0.906
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(R2), Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE), as defined in 
the following forms.
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 Where  iEXPdC  and  iMLPdC  deno te 
the experimental and MLP modeled discharge 

coefficient values and EXPdC  and MLPdC  represents 
the mean experimental and MLP modeled discharge 
coefficient values, respectively. The closer the value 
of index R2 to 1, the more it shows that the estimated 
value is more compatible with the real value. Results 
which are achieved from coefficient of determination 
(R2) have been simulated in relation with linear 
dependence between real and corresponding values 
(for the present case, the experimental and  MLP 
modeled discharge coefficient values) and they are 
sensitive towards deviated points, so in evaluating 
the results, we can’t suffice to this index (Karimi et 
al. 2015). Thus, other statistical indexes like mean 
absolute percentage error (MAPE) - which shows 
the difference between real and estimated models 
in form of percentage of real values - and root mean 
square error (RMSE) - which considers weight of 
larger errors by powering the difference between 
real and estimated values - , are needed in order 
to estimate function of the models. Both MAPE and 
RMSE indexes are able to include zero value (best 
mode) and infinity (worst value).

Fig. 1: The plan of the experimental channel used in this study (Kumar et al, (2011))

Fig. 2: A general view of ANN-MLP

Examining the Results
 All the equations in the center of the line 
of this sections present the discharge coefficient 
through using the experimental data presented by 
Kumar et al. (2011) and the MLP method for each 
of the presented models which consider different 
factors influential on predicting the discharge 
coefficient. Figure 3 shown the correlation analysis 
between the discharge coefficient obtained from the 
MLP model and the experimental data in the training 
state for different models. 

 It could be seen with regard to the 
presented graphs that all six models have been 
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trained generally well and the performance of both 
networks is satisfactory regarding predicting the 
discharge coefficient with R2 variables close to 1. 
However models 1 and 4 have presented relatively 
better results in comparison with the other models 
with highest R2 values which are 0.9953 and 0.9946 
respectively. It could also be seen that the values 
predicted by these models present relatively similar 
results to those obtained by the experiments in 
almost most of the states. The process for predicting 
the discharge coefficient is not the same in states 
which the influential parameters are considered as 
model 4 in such a manner that the predicted values 
predict the results to be lesser or greater than the 
actual values in different points but as it could be 
seen, the results presented by this model are fairly 
accurate to the extent where the relative error 
presented by this model is approximately 0.67%. 

 Figure 3 also shown that model 1 presents 
better results in comparison with the rest of the 
models (models 2, 3, 5, and 6). It could be seen that 
the process of predicting discharge coefficient in this 
model is almost similar to that of model 4 in such a 
manner that the largest relative error of prediction 
is nearly 0.82% in this model. Therefore it could be 
stated that not considering the ration of the weir crest 
height to the water height behind the weir ratio (L/h) 
does not have a significant impact on the process of 
predicting discharge coefficient. Model 3 presented 
most of the discharge- coefficient prediction results 
to be larger than the actual value. In such a manner 
that the values predicted by this model have a 
relative error of approximately 1.19% in some 
points. Therefore, it could be stated with regard to 
the presented explanations that not considering the 
Froude number (F) parameter has a significant effect 

Fig. 3: Comparing estimated discharge coefficient with experimental result in training state
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on the results of predicting the discharge coefficient. 
Like model 3, model 5 does not predict the results 
with an acceptable level of accuracy either. In 
addition to predicting the results with greater values 
in comparison to the actual values, like model 3, 
this model predicts some values to be lesser than 
the actual values in some points. With regard to the 
relatively high degree of the relative error of these 
predictions, it could be stated that not considering 
the weir crest length to the weir length ratio (L/w) 
in predicting discharge coefficient decreases the 
prediction accuracy. Model 6 predicts discharge 
coefficient with an acceptable level of accuracy with a 
relative error of approximately 0.84%. Model 2 does 
not predict the results accurately either and it has a 
relative error of almost 1.12% in some points. Figure 
4 shown the relative error presented by each of the 
models in predicting discharge coefficient. Carefully 
examining this Figure could lead to the conclusion 
that, model 4 has the best performance in predicting 
discharge coefficient of the weir flow.

 Therefore it could be stated with regard 
to the presented explanations that the height 
above the weir to the channel width ratio (h/b), the 
weir crest length to the weir height ration (L/W), 
and the approximate Froude number (F=V/”(gy)) 
parameters have a significant role in predicting 
discharge coefficient and not considering each 
of them decreases the prediction accuracy of the 
models significantly. In addition to the mentioned 
parameters, the vertex angle (è) plays a role in 
predicting discharge coefficient as well. However 
as it was seen in models number 2 and 3, mot 
considering this parameters has no significant effect 
on predicting discharge coefficient and increases 
the value of the relative error in comparison with 
when this parameter is considered. With regard 
to the presented explanations on different models 
predicting discharge coefficient, Table 2 presents the 
prediction results of each of the models quantitatively 

through using different statistical indexes in training 
state. 

 The MAPE index is the first index which 
is presented for the purposes of examining the 
accuracy of the presented models. MAPE shows 
the different between the predicted values and the 
actual values as a percentage of the actual variables. 
It could be seen that the worst MAPE value was 
presented by model 3 which is almost 1.19%. It could 
also be seen that the value of this parameter is not 
great for any of the models. According to table two, 
model 4 has the least MAPE value which is almost 
0.67% and it presents better results in comparison to 
the rest of the models with regard to this index. The 
RMSE index which expresses the root mean- square 
error has also been used to quantitatively examine 
the models. This index considers the weight of large 
errors more through exponentiation of the different 
between the predicted and actual values. It could be 
seen with regard to the table that the RMSE value 
is the least for model 4 in comparison to the other 
models. The data which were not used in the model 
prediction are used in this section to examine the 
accuracy of the presented models. The statistical 

Table 2: Statistics Indexes - (Train)

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

RMSE 0.01 0.013 0.015 0.009 0.014 0.011
MAPE (%) 0.82 1.12 1.19 0.67 1.16 0.84
R2 0.99 0.99 0.98 0.99 0.98 0.99

Fig. 4: Highest errors in six different models
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indexes presented in Table 3 are used to examine 
the accuracy of each of the models in the testing 
state.

 The value of MAPE presented by different 
models in the testing phase is also relatively good 
with the maximum value of this index which is 
approximately 1.62%. In this state, model 4 presents 
the least value of MAPE as well which is equal to 
1.14% in comparison to the other models. The RMSE 
value which considers the root mean square of error 
presents the accuracy of models through considering 
the larger weights for larger errors. The closest this 
index is to zero the more accurate the model will and 
as it could be seen the value of this index is better in 
both states for model 4 in comparison with the rest 
of the models. Models 1 and 4 predict discharge 
coefficient fairly well will regard to the presented 
explanations however if we would like to select a 
model, it could be stated that model 4 presents better 
results. 

CONCLuSION
 
 There are varied methods such as using 
weirs for controlling flood. The weir can be located 
along the channel length or in the side as a side weir. 
The weir crest length to the water height behind the 
weir ratio, the weir crest length to the weir height 
ratio, the height of the water behind the weir to the 
channel width, the approximate Froude number, 
and the vertex angle dimensionless parameters 

were used in this study to predict the discharge 
coefficient of a weir located along the channel length. 
Six models were presented through considering 
the presented dimensionless parameters and 
sensitivity analysis of the different models to not 
using each of the varied dimensionless parameters. 
The examinations indicated that when all presented 
dimensionless parameters are used except for the 
weir crest length to the height of the water behind 
the weir (model 4) for the purposes of predicting the 
discharge coefficient, we will have the best results 
in comparison with the rest of the states. Although 
model 6, which does not consider the water height 
behind the weir to the channel width ration, also 
presents good results compared to model 4, the 
selected model (model 4) presents the discharge 
coefficient with an error percentage equal to 0.67% 
and an R2 equal to 0.9946 in the training phase of 
the model where its hydraulic parameters had no 
role in predicting the model.

Nomenclature
b  Channel  width (m)
Cd  Coefficient of discharge
V  velocity in the main channel
h   the  water height over the weir
g  Acceleration due to gravity(m/s2)
L  Crest length of water (m)
w  Crest height (m)
ô  Vertex angle (rad)
Y  head over the crest of the weir 
(m)
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