Physico-Chemical Contamination of Groundwater in and Around Industrial Areas of District Alwar, Rajasthan

MITHLESH AGRAWAL* and KAILASH CHAND SHARMA

Department of Rajasthan, University of Rajasthan, Jaipur-302004, India.

http://dx.doi.org/10.12944/CWE.10.2.35

(Received: April 16, 2015; Accepted: May 26, 2015)

ABSTRACT

Chemical behaviors of groundwater in various locations are one of the most dynamic fields of research in the present world. In the present study, groundwater sampling from four industrial areas viz. Matsya Nagar, Bhiwadi, Neemrana and Behror was conducted with an aim to assess the groundwater chemistry and the interpretation of the 'water type' was made using Hill-Piper and Wilcox diagrams. The chemical quality was assessed by examining the major cations, anions and other parameters like sodium adsorption ratio, residual sodium carbonate and sodium percent. The groundwater chemistry was then assessed and factors affecting the area were identified. It was resulted that the groundwater quality of the area was influenced by industrial and human activities which cause pollution in the aquifer system and the data supported the pollution level in the area. Majority of the samples were behaved in more or less same way. The TDS were found in average range of 1000 mg/l, while total hardness ranged the average value of 400 mg/l. Carbonate alkalinity was found in all the water samples and the average pH value were observed 8.60. In some locations, up to 337 mg/l nitrate indicates the nitrogenous contamination in the area. Fluoride was found within the prescribed limits as per BIS (Indian Drinking Water Standard, IS: 10500, 1991) norms, except one significant location at Majri Kalan in Neemrana industrial area has high fluoride as 13.0 mg/l. The interpretation of the 'water type' was made using Hill-Piper and Wilcox diagrams. The prominent type was Na/Mg-HCO, and Na/Mg-CI type of water. However, a slight variation was observed in the Na-HCO, type of water. Sodium (alkali) hazard were observed from low (S1) to high (S3) and salinity hazard is high (C3) to very high (C4).

Key words: Groundwater quality, Physico-chemical contamination, Piper diagram, water type.

INTRODUCTION

Water is one of the abundantly available substance in the nature next to air. Water is considered as a very dilute solution of number of chemicals essential for maintaining equilibrium in biochemical reactions taking place in all living organisms in order to maintain the physiology. Water quality as well as quantity crisis is the burning issue all around the world and raise a big challenge as the groundwater as use as drinking purposes become very scare in the world. Water scarcity and poor quality water is not only harmful to human life but also affects the fertility of soil and therefore diminishes the growth of plants and crops. Development never means on the cost of nature, but the global modernization procedures puts stress on groundwater as well as surface water resources all around the world. Industrial development is the main source of water pollution as it gives out harmful chemicals and micro organisms.

Hard water mostly contains dissolved salts of calcium and magnesium as bicarbonates, sulphates and chlorides. Major cations, anions, conductivity, dissolved solids, pH, SAR, RSC and %Na are constituents of study and are determined in milligrams per litre (mg/I) or in parts per million (ppm). District Alwar is located in north eastern part of Rajasthan in between 27°40 to 28°40 North latitude and 76°70 to 77°13 East longitude. The length of the district from north to south, it is 137 kms while from east to west, it is 110 kms. The district is surrounded by Gurgaon of Haryana and Bharatpur in north-east side, Mahendragarh of Hariyana from north-west side, Jaipur by south-west and Sawaimadhopur by southern side.

The aquifer water quality of four industrial areas viz. Matsya, Bhiwadi, Neemrana and Behror industrial area were selected for study. Industrial activities generate large number and variety of waste products which were generally discharged in to water streams. Now a day the dispersal of waste waters is of widespread national concern.

MATERIALS AND METHODS

Sampling

Ground water sampling was done from different sites of industrial areas in 1.0 litre polythene bottles for the analysis of chemical parameters, 1.0 litre nitric acid treated samples for trace metal analysis and 2.0 litre for BOD and COD analysis.

Analysis

Chemical parameters like electrical conductivity and pH were determined using

conductivity and pH meters. Ca, Mg and total hardness (as $CaCO_3$) was analyzed using EDTAcomplexo-metric titrations. Chloride was analyzed by standard AgNO₃ as intermediate and K₂CrO₄ as marker (Argento-metric titration). Sulphate was analyzed using back titration method and alkalinity by acidimetric titration. Nitrate was analyzed using UV-Visible spectrophotometer at 220 nm and fluoride at 540 nm wavelengths (APHA, 1989). TDS, total hardness (as CaCO₃), *TA, Na%, RSC and SAR* were calculated using suitable formula.

RESULTS AND DISCUSSION

As per WHO and BIS (IS 10500:1991) drinking water specifications, the desirable concentration of TDS is less than 500 ppm and maximum permissible limit in the absence of alternative source is 1500 ppm (2000 ppm as per BIS). Beyond this limits, palatability decreases and may cause gastrointestinal irritation. In the areas under investigation was found that out of 25 water samples 23 water samples having TDS in between 500 to 2000 mg/l (92%). Only 2 water sample ranged within 500 mg/l (8%) and no one sample cross the upper limits of TDS 2000 mg/l. The average TDS in the area was found 1018 mg/l (Figure-1). The desirable Ca⁺² (as CaCO₂) concentration in normal potable ground water should have less than 75.0 mg/l while 200 mg/l set as maximum permissible

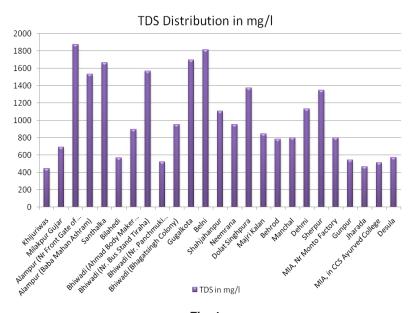
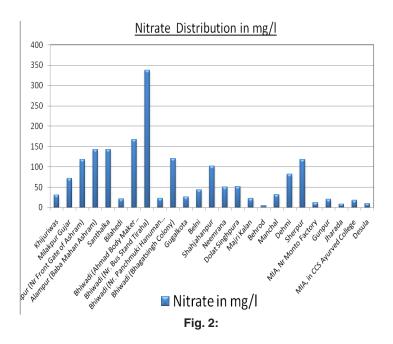


Fig. 1:

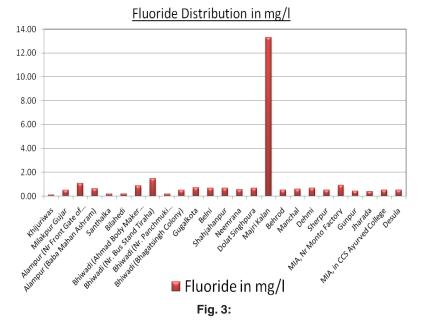
	Single 8.8 8.20 4.43 77 3 40 47 50 0 24 317 300 72 43 71 295 35.91 0.5 Sa 35500 187 1800 157 143 0.68 145 7.5 4.2.66 0 24 317 300 7.5 4.2.66 0 24 317 300 173 0.68 35.1 0.5 Sa 8.6 2800 1567 95 6 38 39 106 173 0.68 36.19 0 375 245 514 00 35 47.2 47.2 490 17 300 317 400 175 34.27 10 66 36 375 24.5 330 101 36 47.5 25 44.15 376 42.03 375 45.2 36 37.5 45.5 36 37.5 45.5 36 37.5 45.5 36.7 <th></th> <th>No.</th> <th>Locations</th> <th>Hd</th> <th>Э</th> <th>TDS</th> <th>Na⁺</th> <th>¥</th> <th>Ca‡</th> <th>‡ Mg</th> <th>ö</th> <th>SO4</th> <th>co^{3 –}</th> <th>HC0⁻</th> <th>TA as CaCO₃</th> <th>NO³</th> <th>ù.</th> <th>TH as CaCO₃</th> <th>Na%</th> <th>RSC</th> <th>SAR</th>		No.	Locations	Hd	Э	TDS	Na⁺	¥	Ca‡	‡ Mg	ö	SO4	co ^{3 –}	HC0 ⁻	TA as CaCO ₃	NO ³	ù.	TH as CaCO ₃	Na%	RSC	SAR
	S B T 1010 689 145 4 38 911 24 317 300 72 0.48 115 34.27 0 S 8.6 2600 157 269 11 102 245 547 211 243 300 175 34.27 0 35.1 910 56.3 36.1 90.63 35.1 910 56.3 36.1 90.63 35.1 910 96 24 317 300 175 24.8 0 S 8.5 1370 994 95 24 317 300 175 34.27 0 35.1 0.11 175 34.17 100 35.1 0.11 175 34.17 100.8 34.3 37.14 100.8 34.3 37.14 100.8 34.3 37.14 37.15 36.1 37.14 37.15 36.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 30.1 <th< td=""><td>S Bit 100 689 145 4 38 21 300 72 0.48 175 34.27 0 S Bit 2500 157 254 557 211 102 117 34.27 0 13 0.63 775 42.86 0 5 5 5 5 5 5 5 5 5 5 5 5 137 300 157 36.63 37.5 2.86 0 5 3 17 300 167 36.5 36.13 30 30 317 300 317 30.5 317 30.63 37.5 2.86 0 33 317 300 137 30.5 317 30 317 30.5 317 30 317 30 30 30 30 30 30 317 30 30 30 30 30 30 30 30 30 30 30 30</td><td> _</td><td>s,</td><td></td><td>320</td><td>443</td><td>17</td><td>e</td><td>40</td><td>47</td><td>50</td><td>0</td><td>24</td><td>342</td><td>320</td><td>31</td><td>0.1</td><td>295</td><td>35.91</td><td>0.5</td><td>4.13</td></th<>	S Bit 100 689 145 4 38 21 300 72 0.48 175 34.27 0 S Bit 2500 157 254 557 211 102 117 34.27 0 13 0.63 775 42.86 0 5 5 5 5 5 5 5 5 5 5 5 5 137 300 157 36.63 37.5 2.86 0 5 3 17 300 167 36.5 36.13 30 30 317 300 317 30.5 317 30.63 37.5 2.86 0 33 317 300 137 30.5 317 30 317 30.5 317 30 317 30 30 30 30 30 30 317 30 30 30 30 30 30 30 30 30 30 30 30	_	s,		320	443	17	e	40	47	50	0	24	342	320	31	0.1	295	35.91	0.5	4.13
Si 8.5 3560 1874 285 11 102 224 652 293 24 310 118 1.07 1175 34.27 0 Si 8.6 2800 1531 269 4 64 150 376 24.8 57.3 42.86 0 Si 8.8 970 567 91 260 137 260 36.19 0 36.19 0 Si 8.8 970 567 61 36.7 21 36.19 0 36.19 0 Si 8.8 870 550 6 37 37 121 0.10 42.85 34.4 Si 8.7 2970 1694 524 5 37 300 121 0.17 136 37.15 37.16 Si 8.7 2970 1694 524 5 37.6 27.75 37.6 37.75 37.75 37.75 37.75 37.6 <td>Signed 8.5 3560 1874 285 11 102 224 652 283 230 310 1175 34.27 0 Signed 8.8 970 567 95 6 388 370 101 102 245 24 350 150 351 9 106 0 36 452 430 137 136 303 37.01 0 35 440 35 35 440 35 35 36 140 0 35 440 35 35 36 147 105 55.6 430 37 145 105 37.01 0 Si 8.8 8.70 520 97 9 40 27 28 247 347 216 37 211 105 55.6 0 37 51.6 71.45 75.5 75.45 75.5 75.45 75.5 75.45 75.6 75.45 75.6 77.45</td> <td>Signed Signed Signed<</td> <td>0</td> <td>်တိ</td> <td></td> <td>010</td> <td>689</td> <td>145</td> <td>4</td> <td>38</td> <td>29</td> <td>128</td> <td>91</td> <td>24</td> <td>317</td> <td>300</td> <td>72</td> <td>0.48</td> <td>215</td> <td>58.88</td> <td>1.7</td> <td>8.86</td>	Signed 8.5 3560 1874 285 11 102 224 652 283 230 310 1175 34.27 0 Signed 8.8 970 567 95 6 388 370 101 102 245 24 350 150 351 9 106 0 36 452 430 137 136 303 37.01 0 35 440 35 35 440 35 35 36 140 0 35 440 35 35 36 147 105 55.6 430 37 145 105 37.01 0 Si 8.8 8.70 520 97 9 40 27 28 247 347 216 37 211 105 55.6 0 37 51.6 71.45 75.5 75.45 75.5 75.45 75.5 75.45 75.6 75.45 75.6 77.45	Signed Signed<	0	်တိ		010	689	145	4	38	29	128	91	24	317	300	72	0.48	215	58.88	1.7	8.86
	Si 2600 1531 269 4 64 150 376 245 24 513 460 143 0.63 775 42.86 0 Si 85 370 167 96 3 143 0.63 37.5 43.0 37.5 43.0 37.0 9.0 9.0 9.0 36 45.0 37.0 9.0 9.0 9.0 9.0 9.0 9.1 9.0	Si Bis Zeb00 1531 Zeb0 1531 Zeb0 1531 Zeb0 1531 Zeb0 351 330 330 133 Diss 775 42.8.8 0 Si 8.8 9.70 567 9 9 567 24 357 300 167 0.86 430 37.01 0 Si 8.8 1370 5570 894 120 10 42 37 330 37.01 0.18 37.01 0 Si 8.7 1370 594 120 10 42 37 24 151 330 37.01 0 Si 8.7 1370 594 50 34 37.01 0 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 37.61 10.8 3	m	ູ້ທໍ	ß	560	1874	285	11	102	224	652	293	24	330	310	118	1.07	1175	34.27	0	7.89
	Si 2340 1663 251 9 126 154 567 211 24 354 330 143 0.17 950 36.19 0 Si 8.8 9.70 567 251 24 317 145 1005 15.96 0 337 145 1005 15.96 0 35 347 300 167 0.86 337 340 130 357 145 1005 15.96 0 35 347 300 167 0.86 337 340 101 30 167 0.86 340 357 341 33 34 35 34 35 347 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 34 35 36 37 36 36 37	Si 2240 1663 251 9 126 154 567 211 24 354 330 143 101 950 3613 35 Si 88 870 550 95 6 38 370 511 815 1005 15.96 0 36 473 337 1.45 1005 15.96 0 337 1.45 1005 15.96 0 337 1.45 1005 15.96 0 337 1.45 1005 15.96 0 337 1.45 1005 15.96 0 337 1.45 1005 15.96 0 337 1.410 938 347 250 237 347 216 817 1018 345 347 325 77.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.45 73.56 74.55 <td>. +</td> <td>ິທິ</td> <td>9</td> <td>009</td> <td>1531</td> <td>269</td> <td>4</td> <td>64</td> <td>150</td> <td>376</td> <td>245</td> <td>24</td> <td>513</td> <td>460</td> <td>143</td> <td>0.63</td> <td>775</td> <td>42.86</td> <td>0</td> <td>9.19</td>	. +	ິທິ	9	009	1531	269	4	64	150	376	245	24	513	460	143	0.63	775	42.86	0	9.19
	Si B70 567 95 6 38 39 106 0 36 452 430 21 0.18 255 44.03 357 Si 8.5 1370 567 95 6 24 317 300 167 0.36 4303 37.01 0 Si 8.7 1370 550 97 9 40 27 92 0 24 415 380 23 0117 210 485 347 37 37 147 930 37 147 954 57 53 60 75 257 715 715 715 37 37 715 715 37 37 755 745 75 37 57 37 57 37 57 37 57 37 57 37 57 37 57 37 57 37 57 37 57 37 57 37 57 37	Si 970 567 95 6 38 370 101 255 44.03 3.5 Si 1370 884 120 10 42 79 199 96 24 317 300 157 168 330 37.01 0 37.01 0 37.01 0 37.01 0 37.01 101 0 8 37.01 121 0.48 337 145 105 15.96 0 37.01 121 108 337 145 105 15.96 0 37.01 121 145 105 15.9 37.01 121 148 71.01 145 71.65 71.1 145 71.65 71.1 145 71.65 71.1 145 71.05 71.65 71.1 137 75.1 74.45 75.5 74.45 75.5 74.45 75.5 74.45 75.5 74.45 75.5 75.45 75.5 75.45 75.5 75.45 75.5	10	້ທ້	ß	940	1663	251	6	126	154	567	211	24	354	330	143	0.17	950	36.19	0	7.50
	S ¹ 8.5 1370 894 120 10 42 79 199 96 24 317 300 167 0.86 430 37.01 0 S ¹ 8.8 870 520 97 9 0.27 192 0.4 415 300 167 0.86 430 37.01 0 S ¹ 8.7 1470 954 260 6 30 27 184 101 36 370 121 0.48 155 745 375 755 37 755 37 755 37 755 37 755 37 755 37 755 37 755 37 37 37 370 751 10.8 37 36 57 37 37 <td>Si 8.5 1370 894 120 10 42 79 10 24 317 300 167 0.86 430 37.01 0 Si 8.8 870 510 92 0 226 24 281 270 145 1005 15.96 0 Si 8.7 1470 954 52 53 60 732 716 148 74.59 37. Si 8.7 1470 954 53 567 53 60 732 700 26 0.7 325 71.45 7.5 34 35 370 71.1 0.8 74.59 37. 35 36 73.56 57.15 34 Si 8.6 1870 1107 280 56 71 34 75 76.8 76.1 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3</td> <td>6</td> <td>ິທິ</td> <td>ω</td> <td>970</td> <td>567</td> <td>95</td> <td>9</td> <td>38</td> <td>39</td> <td>106</td> <td>0</td> <td>36</td> <td>452</td> <td>430</td> <td>21</td> <td>0.18</td> <td>255</td> <td>44.03</td> <td>3.5</td> <td>5.41</td>	Si 8.5 1370 894 120 10 42 79 10 24 317 300 167 0.86 430 37.01 0 Si 8.8 870 510 92 0 226 24 281 270 145 1005 15.96 0 Si 8.7 1470 954 52 53 60 732 716 148 74.59 37. Si 8.7 1470 954 53 567 53 60 732 700 26 0.7 325 71.45 7.5 34 35 370 71.1 0.8 74.59 37. 35 36 73.56 57.15 34 Si 8.6 1870 1107 280 56 71 34 75 76.8 76.1 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3	6	ິທິ	ω	970	567	95	9	38	39	106	0	36	452	430	21	0.18	255	44.03	3.5	5.41
	Si 8.4 2360 1569 89 7 68 203 475 226 24 281 270 337 1.45 105 15.96 0 Si 8.7 1470 954 260 97 9 400 27 32 0.17 210 48.85 3.45 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 3.74 5.93 5.74.55 5.16 5.17 5.16 5.17 5.45 5.7 5.45 5.7 5.45 5.7 5.45 5.7 5.45 5.7 5.45 5.7 5.45 5.7 5.45 5.7 5.45 5.7 5.7 5	Si 8.4 2360 1569 89 7 68 203 475 226 24 121 103 145 1005 15.96 0 Si 8.7 520 97 9 400 27 92 0 23 378 23 0.17 210 48.85 3.37 Si 8.7 1470 954 560 6 30 27 137 210 48.85 3.7 53 370 121 10.8 33 370 121 10.8 375 370 371 325 371 325 371 325 371 325 371 325 371 325 371 325 371 37 371 325 371 37 371 37 37 371 37 371 37 37 37 371 37 371 37 371 37 371 37 371 375 56.84 75	~	َ ک	ß	370	894	120	10	42	79	199	96	24	317	300	167	0.86	430	37.01	0	5.45
	Signed 8.8 8.70 5.20 97 9 40 27 92 0 24 415 380 23 0.17 210 48.8 3.4 Signes 8.8 710 954 560 5 30 27 184 101 36 378 370 1611 10.8 5 7.456 7.5 7.456 7.5 7.745 7.5 7.75 7.745 7.75 7.55 7.75 7.55 7.75	Signed 8.8 8.70 5.20 97 9 4.0 27 92 0 24 415 380 23 0.17 210 48.85 3.4 53 73.45 73.45 75. Sin 8.7 1470 954 5260 5 30 27 184 101 36 378 370 111 10.8 74.55 75.15 7.45 7.5 Sin 8.5 1630 5511 21 22 51 220 62 24 48 72 450 10.7 210 825 65.11 3.7 Sin 8.5 1630 551 22 51 22 53 48 75 56.8 71 34 Sin 8.5 1300 1717 280 52 22 23 30 57.1 34 75 75.84 75 56.8 75.7 34 75 56.8 75.7 34 <t< td=""><td>m</td><td>ັທັ</td><td>4</td><td>360</td><td>1569</td><td>89</td><td>7</td><td>68</td><td>203</td><td>475</td><td>226</td><td>24</td><td>281</td><td>270</td><td>337</td><td>1.45</td><td>1005</td><td>15.96</td><td>0</td><td>2.70</td></t<>	m	ັທັ	4	360	1569	89	7	68	203	475	226	24	281	270	337	1.45	1005	15.96	0	2.70
	Single B.7 1470 954 260 6 30 27 184 101 36 378 370 121 0.48 185 74.59 37 Single B77 1970 1954 549 4 26 74 347 216 84 940 910 44 0.65 370 76.11 10.8 Single B77 1374 451 1 30 951 251 220 62 72 700 56 70 75.8 77.45 75 Single B87 1107 280 57 220 62 72 700 57 20 65.11 37 Single 187 1190 847 260 450 50 65.11 37 58 75.45 75.8 75.45 75.8 75.45 75.45 75.45 75.73 12 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Single B.7 1470 954 260 6 30 27 184 101 36 378 370 121 0.48 185 74.50 37 57.53 50 732 700 173 255 77.45 7.5 320 51.1 3.1 322 700 1694 524 5 30 51.7 322 700 1694 326 77.5 320 56.17 34 37 34.5 370 51.1 310 55.7 34 320 55.1 321 56.1 34 360 57 34 320 56.17 34 37 34 350 57.45 57.53 56.17 34 351 34 351 351 34 351 34 351 <th< td=""><td>6</td><td>ິທິ</td><td>ω</td><td>370</td><td>520</td><td>97</td><td>6</td><td>40</td><td>27</td><td>92</td><td>0</td><td>24</td><td>415</td><td>380</td><td>23</td><td>0.17</td><td>210</td><td>48.85</td><td>3.4</td><td>5.93</td></th<>	6	ິທິ	ω	370	520	97	6	40	27	92	0	24	415	380	23	0.17	210	48.85	3.4	5.93
	Single B.7 2970 1694 524 5 34 58 567 53 60 732 700 26 0.7 325 77.45 7.5 Single 1877 1107 280 5 30 62.11 30 Single 1877 1107 280 5 30 62.11 37 Single 8.7 2370 137.4 451 1 30 33 33 55 77.45 7.45 7.5 Single 8.6 1370 187.4 451 1 30 28 139 52 24 500 550 51.1 37 Single 8.6 1400 847 560 4 22 29 128 8 57 100 26 102 56.11 37 Single 8.6 1330 251 21 22 28 48 50 55 125 61 137 <td>Single B.7 2970 1694 524 5 34 58 567 53 60 732 700 26 0.7 325 77.45 7.5 Single 85 1630 1815 549 4 26 74 347 216 84 940 910 44 0.65 370 76.11 103 Single 85 1630 951 251 22 51 220 450 150 157 266 15.1 37 Single 85 1350 781 179 4 26 46 20 550 254 37 56 57 300 551 30 56.12 37 56.8 57 30 56.11 37 56.8 57 30 56.11 37 56.8 57 30 56.12 30 56.12 30 56.12 57 50.8 57 30 56 57 30 <</td> <td>0</td> <td>َں َ</td> <td>7</td> <td>470</td> <td>954</td> <td>260</td> <td>9</td> <td>30</td> <td>27</td> <td>184</td> <td>101</td> <td>36</td> <td>378</td> <td>370</td> <td>121</td> <td>0.48</td> <td>185</td> <td>74.59</td> <td>3.7</td> <td>17.22</td>	Single B.7 2970 1694 524 5 34 58 567 53 60 732 700 26 0.7 325 77.45 7.5 Single 85 1630 1815 549 4 26 74 347 216 84 940 910 44 0.65 370 76.11 103 Single 85 1630 951 251 22 51 220 450 150 157 266 15.1 37 Single 85 1350 781 179 4 26 46 20 550 254 37 56 57 300 551 30 56.12 37 56.8 57 30 56.11 37 56.8 57 30 56.11 37 56.8 57 30 56.12 30 56.12 30 56.12 57 50.8 57 30 56 57 30 <	0	َں َ	7	470	954	260	9	30	27	184	101	36	378	370	121	0.48	185	74.59	3.7	17.22
	Single 8.5 3160 1815 549 4 26 74 347 216 84 940 910 44 0.65 370 76.11 10.8 Single 8.6 1870 1107 280 5 30 60 284 48 72 450 102 0.64 320 65.11 3.4 Single 8.6 1400 847 260 4 22 59 128 65.11 3.7 3.4 Single 8.6 1400 847 260 4 22 229 128 48 50.65 51.1 3.7 Single 8.5 1350 781 179 4 22 262 53 48 50 55 105 710 82 56 5.13 31 5 5 30 56.12 31 5 8 5 4 5 4 5 4 5 105 0		Ξ	ۍ ئ	~	020	1694	524	Ŋ	34	58	567	53	60	732	700	26	0.7	325	77.45	7.5	27.32
		Single 8.6 1870 1107 280 5 30 60 284 48 72 450 102 0.64 320 65.11 3.7 Single 8.5 1630 951 251 21 220 62 24 500 550 0.54 265 65.11 3.7 Single 8.5 1350 781 1 30 33 19 62 72 708 550 254 265 13.3 75 75.84 75 Single 8.5 1940 1131 354 3 34 28 24 455 440 45 70 550 256 12.5 79.03 551 21.2 0.54 75 31.2 12.5 79.03 551 12.5 79.03 551 12.5 79.03 551 12.5 79.03 551 12.5 73.01 12.5 75.84 753 12.5 75.3 12.5 75.3 </td <td>2</td> <td>S.</td> <td>ß</td> <td>160</td> <td>1815</td> <td>549</td> <td>4</td> <td>26</td> <td>74</td> <td>347</td> <td>216</td> <td>84</td> <td>940</td> <td>910</td> <td>44</td> <td>0.65</td> <td>370</td> <td>76.11</td> <td>10.8</td> <td>27.45</td>	2	S.	ß	160	1815	549	4	26	74	347	216	84	940	910	44	0.65	370	76.11	10.8	27.45
			33	ِ ئ	9	870	1107	280	Ŋ	30	60	284	48	72	452	490	102	0.64	320	65.17	3.4	14.76
			4	S S	ß	630	951	251	21	22	51	220	62	24	500	450	50	0.54	265	65.11	3.7	14.69
	Single 8.6 1400 847 260 4 22 29 128 48 84 500 550 22 13.3 175 75.84 7.5 Single 8.5 1350 781 179 4 26 57 262 53 48 293 320 5 0.55 75.03 57.12 0.4 Single 8.5 1940 1131 354 3 34 28 244 96 60 452 470 82 0.66 200 75.03 51 12 Single 8.5 104 1131 354 3 34 28 24 59 610 67.0 67.0 67.0 67.0 67.73 12 Single 2210 1349 299 5 42 48 24 598 530 147 670 12 0.4 15 15 15 15 15 15 15 <td< td=""><td></td><td>15</td><td>ئ ئ</td><td>~</td><td>370</td><td>1374</td><td>451</td><td>-</td><td>30</td><td>33</td><td>319</td><td>62</td><td>72</td><td>708</td><td>700</td><td>52</td><td>0.67</td><td>210</td><td>82.28</td><td>9.8</td><td>28.41</td></td<>		15	ئ ئ	~	370	1374	451	-	30	33	319	62	72	708	700	52	0.67	210	82.28	9.8	28.41
	Single 8:5 1350 781 179 4 265 53 48 293 320 5 300 56.12 0.4 Single 8:7 1190 798 225 4 24 16 199 48 24 452 410 32 0.56 125 79.03 5.7 Single 8:5 1940 1131 354 3 34 28 24 550 118 0.49 470 57.73 12 Single 8:6 2210 1349 299 5 42 48 24 530 118 0.49 470 57.73 12 Single 8:6 250 513 31 7 42 71 53 84 647 670 12 0.4 275 37.51 1.5 Single 950 513 31 7 42 78 463 73 370 8 0.37 <td< td=""><td></td><td>9</td><td><u>ہ</u> گ</td><td>9</td><td>400</td><td>847</td><td>260</td><td>4</td><td>22</td><td>29</td><td>128</td><td>48</td><td>84</td><td>500</td><td>550</td><td>22</td><td>13.3</td><td>175</td><td>75.84</td><td>7.5</td><td>18.20</td></td<>		9	<u>ہ</u> گ	9	400	847	260	4	22	29	128	48	84	500	550	22	13.3	175	75.84	7.5	18.20
	Single 8.7 1190 798 225 4 24 16 199 48 24 452 410 32 0.56 125 79.03 5.7 Single 8.5 1940 1131 354 3 28 248 96 60 452 470 82 0.66 200 79.06 5.4 Single 8.6 2210 1349 299 5 42 48 24 598 530 118 0.49 470 57.73 1.2 Single 8.6 2210 1349 299 5 42 48 24 437 670 12 0.9 175 71.54 9.9 Single 950 513 31 7 42 78 360 18 0.37 350 0.4 5 4 5 415 380 18 0.5 425 13.29 0.6 Sindis 950 570		4	S N	2	350	781	179	4	26	57	262	53	48	293	320	Ŋ	0.5	300	56.12	0.4	9.82
	Single 8.5 1940 1131 354 3 228 248 96 60 452 470 82 0.66 200 79.06 5.4 Single 8.6 2210 1349 299 5 42 48 24 598 530 118 0.49 470 57.73 1.2 Single 8.8 1210 800 205 2 22 29 71 53 84 647 670 12 0.9 175 71.54 9.9 Single 8.5 710 467 17 3 48 38 142 0 24 415 370 8.49 0.4 275 37.51 1.5 Single 950 513 31 7 42 78 106 0 24 415 380 0.4 0.4 0.4 0.4 0.5 425 12.6 1.5 0.4 0.5 425 12.6		8	ۍ پ	7	190	798	225	4	24	16	199	48	24	452	410	32	0.56	125	79.03	5.7	17.79
	S ¹⁰ 8.6 2210 1349 299 5 42 89 425 48 24 598 530 118 0.49 470 57.73 1.2 S ²¹ 8.8 1210 800 205 2 29 71 53 84 647 670 12 0.9 175 71.54 9.9 S ²² 8.5 710 467 17 3 48 38 142 0 24 473 370 8 0.37 350 9.49 0.4 S ²² 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.4 575 37.51 1.5 S ²² 8.4 960 575 29 4 46 75 106 0 26 537 500 10 0.5 425 12.6 1.5 S ²² 8.4 960 56		6	ို့	5	940	1131	354	ო	34	28	248	96	60	452	470	82	0.66	200	79.06	5.4	22.48
	S ²¹ 8.8 1210 800 205 2 29 71 53 84 647 670 12 0.9 175 71.54 9.9 S ²² 8.3 870 541 77 3 48 38 142 0 24 378 350 0.49 9.49 0.4 S ²² 8.5 710 467 17 2 58 50 106 0 24 403 370 8 0.37 350 9.49 0.4 S ²⁴ 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S ²² 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5 Parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, PH as no unit. E 53		0	°°°	9	210	1349	299	Ŋ	42	89	425	48	24	598	530	118	0.49	470	57.73	1.2	13.06
	S ²² 8.3 870 541 77 3 48 38 142 0 24 370 8 6.75 37.51 1.5 S ²³ 8.5 710 467 17 2 58 50 106 0 24 403 370 8 0.37 350 9.49 0.4 S ²⁴ 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S ²⁴ 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 5.0 8 8 8 8 8		T	ی م	8	210	800	205	N	22	29	71	53	84	647	670	12	0.9	175	71.54	9.9	14.35
	S ²³ 8.5 710 467 17 2 58 50 106 0 24 403 370 8 0.37 350 9.49 0.4 S ²⁴ 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S ²⁴ 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 1.5 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. S ₄ bhiwadi (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahm. ker); S ₆ Bhiwadi (Near Bus Stand Tiraha); S ₃ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahja Neemrana; S ₄ . Dolat Singhpura; S ₄ Mairi Kalan; S ₇ , Behrod; S ₆ Manchal; S ₅ , Sherpur; S ₅ , Matsya Industrial Area; S ₄ ,	S ²³ 8.5 710 467 17 2 58 50 106 0 24 403 370 8 0.37 350 9.49 0.4 S ²⁴ 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S ²⁴ 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 1.5 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 5, alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S, Bhiwadi (Nr. Ahm. ker); S ₈ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchuki Hanuman Tample); S ₁₀ Bhiwadi (Bagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahja Neemrana; S ₁₆ Dolat Singhpura; S ₁₆ Majri Kalan; S ₇ , Bhiwadi (Nr. Panchuki; S ₂₀ Sherpur; S ₂₁ Matsya Industrial Area; S ₂₀ Gun	2	"°	с,	370	541	77	ო	48	38	142	0	24	378	350	20	0.4	275	37.51	1.5	4.15
S_{25}^{24} 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S_{25}^{24} 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5	S24 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S25 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 54 alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahm. ker); S ₆ Bhiwadi (Near Bus Stand Tiraha); S ₉ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₁₂ Belni; S ₁₃ Shahja Neemrana; S ₄ . Dolat Singhpura; S ₄ , Mariai (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₂ Shahja Neemrana; S ₄ . Dolat Singhpura; S ₄ . Mariai S ₄ . Sehnidi; S ₅₀ . Sherpur; S ₅₀ . Matsya Industrial Area; S ₅₀ . Junuur; S ₅₀ . Ju	S ²⁴ 8.6 950 513 31 7 42 78 106 0 24 415 380 18 0.5 425 13.29 0 S ²⁴ 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 36 537 500 10 0.5 425 12.6 1.5 parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. 36 537 500 10 0.5 425 12.6 1.5 cations: S ₁ , Khijuriwas; S ₂ Milakpur Gujar; S ₃ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahm. ker); S ₆ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahja Neemrana; S ₁₆ Dolat Singhpura; S ₁₆ Majri Kalan; S ₇ Bhiwadi (Nr. Panchuki S ₂₀ Sherpur; S ₂₁ Matsya Industrial Area; S ₂₂ Gunpur; S ₂₃ Uharada; S ₂₃ MIA, I Need Colaci Bestris S ₁₀ Bhi	33	°,		710	467	17	N	58	50	106	0	24	403	370	ø	0.37	350	9.49	0.4	0.82
S_{25}^{-1} 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5	25 S ₂₅ 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5 1.32 All parameters are in mg/ except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. Cocations : S ₁ Khijuriwas; S ₂ Milakpur Gujar; S ₃ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₆ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahmad Body Maker); S ₈ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpur; S ₁₄ Nemrana; S ₁₆ Dolat Singhpura; S ₁₆ Majri Kalan; S ₁₆ Manchal; S ₁₆ Manchal; S ₂₆ Ghenni; S ₂₆ Shenpur; S ₂₆ Matsya Industrial Area; S ₂₆ Gunpur; S ₂₆ Jharada; S ₂₆ MIA, Nr. CCS	25 S ₂₅ 8.4 980 575 29 4 46 75 106 0 36 537 500 10 0.5 425 12.6 1.5 1.32 All parameters are in mg/ except EC in μS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. -ccations : S ₁ Khijuriwas; S ₂ Milakpur Gujar; S ₃ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahmad Bo Maker); S ₈ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpi S ₄ Neemrana; S ₁₅ Dolat Singhpura; S ₁₆ Majri Kalan; S ₁₇ Behrod; S ₁₈ Manchal; S ₁₉ Dehmi; S ₂₀ Sherpur; S ₂₁ Matsya Industrial Area; S ₂₂ Gunpur; S ₂₃ Uharada; S ₂₄ MIA, Nr. CC	4	S. ²⁴		950	513	31	7	42	78	106	0	24	415	380	18	0.5	425	13.29	0	1.41
	All parameters are in mg/l except EC in μS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. -ocations: S ₁ Khijuriwas; S ₂ Milakpur Gujar; S ₃ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahmad Body Maker); S ₈ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpur; S ₁ , Neemrana; S., Dolat Singhpura; S., Majri Kalan; S., Behrod; S., Manchal; S., Sherpur; S., Matsya Industrial Area; S., Guppur; S., Jharada; S., MIA, Nr. CCS	All parameters are in mg/l except EC in µS/cm at 25°C, RSC and SAR in meq/l, pH has no unit. -ocations: S ₁ Khijuriwas; S ₂ Milakpur Gujar; S ₃ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahmad Bo Maker); S ₈ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpi S ₁₄ Neemrana; S ₁₅ Dolat Singhpura; S ₁₆ Majri Kalan; S ₁₇ Behrod; S ₁₈ Manchal; S ₁₉ Dehmi; S ₂₀ Sherpur; S ₂₁ Matsya Industrial Area; S ₂₂ Gunpur; S ₂₃ Jharada; S ₂₄ MIA, Nr. CC	22	\mathbf{S}_{25}		980	575	29	4	46	75	106	0	36	537	500	10	0.5	425	12.6	1.5	1.32
	Aaker); S _a Bhiwadi (Near Bus Stand Tiraha); S _a Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Čolony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpur; S ₂₄ Neemrana; S., Dolat Singhpura; S., Jharada; S., Mia, Nr. CCS	Maker); S _s Bhiwadi (Near Bus Stand Tiraha); Š _s Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Čolony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpi S ₁₄ Neemrana; S ₁₅ Dolat Singhpura; S ₁₆ Majri Kalan; S ₁₇ Behrod; S ₁₈ Manchal; S ₂₀ Sherpur; S ₂₁ Matsya Industrial Area; S ₂₂ Gunpur; S ₂₃ Jharada; S ₂₄ MIA, Nr. CC Murrood Collecte: C. Deculos Mote: C. – C. – Rhiwadi Industrial Area: S. – S. – Matsona Industrial Area: S. – S. – Matsona Industrial Area: S. – S. – Matsona Industrial Area: S. – S.	· ö	ations: S, Khiju	Iriwas; S, M	Milakpur	r Gujar;	S _a Alamp	ur (Nr. F	ront Gat	e of Ashr	am); S₄/	Alampur	(Baba N	Jahan Asl	hram)S ₅ {	Santhalk	a; S _s Bila	thedi; S_7	3hiwadi (Nr. Ahm	ad Body
-ocations: S, Khijuriwas; S, Milakpur Gujar; S, Alampur (Nr. Front Gate of Ashram); S, Alampur (Baba Mahan Ashram)S, Santhalka; S, Bilahedi; S, Bhiwadi (Nr. Ahmad Body	3, Neemrans; S., Dolat Singhpurs; S., Majri Kalan; S., Behrod; S., Manchal; S., Sherpur; S., Matsya Industrial Area; S., Gunpur; S., Jharada; S., MIA, Nr. CCS	λ _{i4} Neemrana; S _{i5} Dolat Singhpura; S _{i6} Majri Kalan; S _{i7} Behrod; S _{i9} Dehmi; S ₂₀ Sherpur; S ₂₁ Matsya Industrial Area; S ₂₂ Gunpur; S ₂₃ Jharada; S ₂₄ MIA, Nr. CC Nurrivad Collecto: C. Deerdo: Mote: C. – C. – Reivedi Industrial Area: C. – S. – Nimerana Industrial Area: S. – S. – Mateva Industri	∕lak	er); S ₈ Bhiwadi	(Near Bus	s Stand	Tiraha)	; S ₉ Bhiw	adi (Nr.	Panchm	uki Hanı	iman Ta	mple); S	Bhiwa	ıdi (Bhaga	atsingh C	olony); S	Guga ,	lkota; S ₁₂	Belni; S	₃ Shahj	ahanpur
.ocations: S, Khijuriwas; S ₂ Milakpur Gujar; S ₃ Alampur (Nr. Front Gate of Ashram); S ₄ Alampur (Baba Mahan Ashram)S ₅ Santhalka; S ₆ Bilahedi; S ₇ Bhiwadi (Nr. Ahmad Body Aaker); S ₈ Bhiwadi (Near Bus Stand Tiraha); S ₉ Bhiwadi (Nr. Panchmuki Hanuman Tample); S ₁₀ Bhiwadi (Bhagatsingh Colony); S ₁₁ Gugalkota; S ₁₂ Belni; S ₁₃ Shahjahanpur;		uurusa Collace: C. Daeule: Mote: C. C. Bhiwadi Industrial Area: S. – S. Nimrana Industrial Area: S. – S. Mateva Industri	Z ¹ 1	Jeemrana; S ₁₅ L	Dolat Single	hpura; 5	S ₁₆ Majri	Kalan; S	317 Behr	od; S ₁₈ M	anchal; {	S ₁₀ Dehr	ni; S ₂₀ Sł	herpur; ;	S ₂₁ Matsys	a Industria	al Area;	S,, Gun	our; S ₂₃ JI	harada; S	Sad MIA,	Nr. CCS

Table 1: Chemical quality of the study area


Area

limit. Beyond this undesirable effects can occur. In the whole study area, the concentration of Ca-H (as CaCO₃) ranges between minimum 22 mg/l at Neemrana and near Monto factory, Matsya Industrial Area to maximum 126 mg/l at Santhalka. The average calcium was measured 44 mg/l in and surrounding areas and found soft in nature and fit for drinking as well as bathing, washing, laundering and industrial activities. The concentration of Mg-H is found minimum 16 ppm at Manchal to maximum 224 mg/l at Alampur (near front gate of Ashram) with the average concentration is calculated 70 mg/l, while maximum relaxable level of magnesium in water should be 100 mg/l. (BIS, 1991 and ICMR, 1975). The result shows that the ground water of the area under investigation is safe side with respect to magnesium and suitable for specific purposes. As per BIS standards, the ground water having up to 250 mg/l total hardness (TH) is essential which relaxes up to maximum of 600 mg/l (Table-2). The average

S. No.	Parameters	Units	ISI: 1991	ICMR: 1975	WHO: 2006
1	EC	µS/cm at 25⁰C	NG	500	600
2	рН	-	6.50-8.50	7.0-8.50	6.50-8.50
3	TDS	mg/L	500	500	500
4	Na⁺	mg/L	NG	NG	200
5	K⁺	mg/L	NG	NG	NG
6	Ca ⁺²	mg/L	75	75	75
7	Mg ⁺²	mg/L	30	50	30
8	Cl	mg/L	250	200	200
9	SO_4^{-2}	mg/L	200	200	200
10	HCO ₃ -	mg/L	NG	NG	NG
11	NO3	mg/L	45	20	50
12	F-	mg/L	1.00	1.00	1.50
13	TH as CaCO	mg/L	300	300	200


Table. 2: Ground Water Quality Standards for Drinking Purposes

NG-No Guideline

679

total hardness in the area under investigation is measured 396 mg/l, while it is found minimum 125 mg/l at Manchal and maximum 1175 mg/l at Alampur (near front gate of Ashram). It can be concluded that the aquifer water is quite hard in nature and it should be used for any specific purposes after taking suitable measures. The Cl⁻ concentration is observed minimum 50 mg/l at Khijuriwas to maximum 652 mg/l at Alampur with an average concentration was measured 254 mg/l. The desirable/essential limit of chloride for drinking water is 250 mg/l and it is relaxed up to 1000 mg/l. Therefore, the chloride concentration was found in between the prescribed limits. The

Hill-Piper Diagram of groundwater of Alwar Industrial Areas

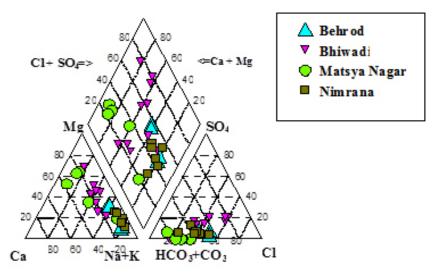
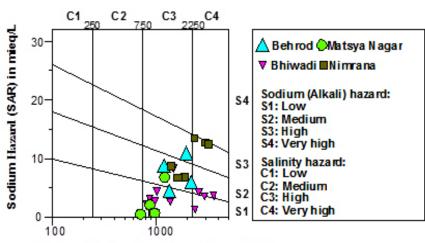



Fig. 4:

680

 SO_4^{-2} concentration in the study area were varies minimum traces at many locations to maximum 293 mg/l at Alampur, while average concentration was measured 82 mg/l. The essential level of sulphate is 200 mg/l while maximum permissible limit for drinking purpose should not be more than 400 mg/l. Therefore, on the basis of these limits and analysis results thereon, it can be said that the ground water in the area was found within limits. More than 200 mg/l sulphate was shown in some locations of Bhiwadi and Neemrana industrial areas (Table-1). As per BIS specifications, the prescribed level of total alkalinity is 200 mg/l, and the higher concentrations make the water unpleasant in taste. Alkalinity relaxes up to 600 mg/l. The water analysis results reveal that the average concentration of alkalinity in the ground water of the area under investigation was measured 468 mg/l ranges from minimum 281 mg/l at near bus stand tiraha of Bhiwadi industrial area to maximum 940 mg/l at Belni of Neemrana industrial area. The BIS sharply relaxed the NO₃⁻ concentration up to 45 mg/l in drinking water for potability which relaxes up to 100 mg/l. In the study area it was found minimum 5 mg/l at Behrod, while maximum 337 mg/l near bus stand tiraha of Bhiwadi industrial area with average of 71 mg/l indicates the increasing rate of nitrate level in the study areas (Figure-2). The F⁻ concentration was found minimum 0.10 mg/l at Khijuriwas to maximum 1.45 mg/l near bus stand tiraha of Bhiwadi industrial area. An exceptional fluoride concentration was observed in Majri kala location of Neemrana industrial area. An elevated concentration of fluoride in groundwater is common in rocky areas heaving fluoride minerals (Handa, 1975). The average fluoride concentration was measured 1.08 mg/l. The water quality standards specified by Bureau of Indian standards (BIS) for drinking, F⁻ concentration should not be more than 1.5 mg/l (Figure-3). Artificial recharge, blending of water, construction of well in the area where the fluoride concentrations are under the safe limits etc. may improve the aesthetic status of community of the area. (Vikasi et al, 1999).

The interpretation of the 'water type' was made using Hill-Piper and Wilcox diagrams. The prominent was Na/Mg-HCO₃ and Na/Mg-Cl type of water. However, a slight variation was observed in the Na-HCO₃ type of water. Sodium (alkali) hazard were observed from low (S1) to high (S3) and salinity hazard is high (C3) to very high (C4) (Figure-4 and 5). The average Na% of the water ranged minimum 9.49 at Jharda to maximum 82.28 in the groundwater of Daulat Singhpura with an average of 51.48 indicates that the groundwater is not fit for excellent irrigation. RSC value <2.0 meq/l put the water bodies in to good category of irrigation water. It was observed nil to 10.8 with an average 3.26 meq/l refers moderately poor quality of irrigation water.

Wilcox Diagram of groundwater of Alwar Industrial Areas

Conductivity in micro Siemens/cm at 25°C

SAR reveals the ratio of sodium versus major cations and reflects the irrigation suitability of the water for different agricultural purposes. Water that has an SAR <3.0 meq/l is safe for irrigating turf and other ornamental landscape plants. Greater than 9.0 can cause severe permeability problems when applied to fine textured soils (a silty clay loam) and should be avoided. In the study, the SAR values ranges minimum 0.82 at Matsya industrial area, near CCS Ayurved College to maximum 28.15 meq/l at Dolat Singhpura with an average of 11.61 meq/l. The area fall in high sodium class and it implies that there is alkali hazard anticipated to the crops.

The overall water quality of the area taken under consideration is getting deteriorated. The causes of quality variations may be attributed to the rainfall, drawdown of water and geological formations/structures of the area (Sharma and Agarwal, 2013).

REFERENCES

- APHA, Standards Methods for Examination of Water and Wastewater, American Public Health Association, Washington DC, edn. 17 (1989).
- BIS Indian Standard Drinking Water Standard Specification (First Revision). 8th Reprint, Sept. 2008, IS, 10500, (1991).
- Handa, B.K., Geochemistry and genesis of fluoride containing groundwater in India, *Groundwater*, 13: 275-281, (1975).
- ICMR Manual of Standards of Quality for Drinking Water Supplies, spl. Res. S.No. 44, ACMR, New Delhi (India), (1975).
- 5. Sharma, K.C. and Agarwal, M., Assessment of ground water quality for drinking and

irrigation purposes in Banasthali village, district-Tonk, Rajasthan, *Nat. Env. & Poll. Tech.*, **12**(4): 679-684, (2013).

- Vikasi, C., Kushwaha, R.K. and Pandit, M.K., Hydrochemical Status of Groundwater in District Ajmer (NW India) with Reference to Fluoride Distribution, *J. Geological Soc. of India*, **73**, 773-784 (1999).
- WHO, International Standards for Drinking Water, World Health Organization, Geneva, (1971).
- WHO, Fluoride and Fluorides, Environmental Health Criteria, 21-23, 63 WHO, Geneva, Switzerland, (1984).

682