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ABSTRACT

	 In this paper, growth and storage of carbon and nitrogen in seedlings of banj oak (Quercus 
leucotrichophora A. Camus) and chir pine (Pinus roxburghii Sarg.) have been compared across 
different levels of nutrient and water availabilities. Four nutrient (144, 264, 384 and 504 mg of NPK 
fertilizer per kg soil) and three watering (21 days, 14 days and 7 days interval) treatments were 
applied to seedlings. At low watering levels, seedling dry mass of both the species decreased towards 
higher nutrient level. However, at high watering level, dry mass increased with increasing water 
availability. When water availability was increased in a constant nutrient environment, dry mass of 
seedling increased with increase in water availability. Both the species showed a similar pattern of 
storing nitrogen instead of increasing biomass particularly at low watering levels. However, at each 
nutrient level, growth and storage increased with increasing moisture availability. As compared to 
Q.  leucotrichophora, seedlings of P.  roxburghii favoured growth over storage (according to its more 
competitive strategy), although this species accumulated more carbon and nitrogen towards the 
higher nutrient level. 
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INTRODUCTION

	 Dur ing the extensive reforestat ion 
programmes, plantations of forest tree seedlings 
are being promoted in spite of their poor out 
planting performance. Among, initial seedling size 
or biomass of forest species has been related to 
post planting survival (Bargali and Bargali, 1999; 
Perez et al., 2007) to the ability to out compete 
other plant species and to the potential for new root 
production (Jobidon et al., 2003; Bargali and Singh, 
1996). In addition, after disturbance, carbon stock is 
important for both resprouting (Huddle and Pallardy, 
1999) and respiration during period of resource 
shortage (Bargali et al.,1992; Joshi et al.,1997). On 
the other hand, nitrogen storage affects the rate of 
growth after planting in the field (Malik and Timmer, 
1998) and seedling capacity to recover foliage after 
disturbances (Bloom et al.,1985).

	 Seedling biomass, carbon and nitrogen 
storage may change in response to resource 
availability but only few studies have addressed 
integrated response of biomass, carbon and nitrogen 
storage to resource availability (Perez et al.,2007; 
Salifu and Timmer, 2003; Bargali and Singh, 1995; 
Bargali and Singh, 1996). Growth and storage may 
compete for Carbon and Nitrogen (Chapin et al., 
1990; Herms  and Mattson, 1992), but resource 
availability may alter the proportion at which both 
resources are captured and stored. The aim of the 
present study was: i) to assess the response of 
growth, carbon and nitrogen reserve of seedling of 
Quercus leucotrichophora and Pinus roxburghii to 
changes in nutrient and water availabilities during 
their first year of growth; ii)  to compare growth 
versus storage in fast growing early successional 
P. roxburghii and slow growing late successional Q. 
leucotrichophora.
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MATERIAL AND METHODS

Species
	 Q. leucotrichophora (Banj oak) and P. 
roxburghii (Chir pine) are two dominant forest 
forming tree species of the Central Himalayan 
region between 1200 to 2200 m elevations. Both 
are evergreen species with similar periodicities 
of leafing, leaf fall and leaf longevities being just 
more than one year (Ralhan et al., 1995). While 
Q. leucotrichophora is regarded as the major late 
successional species of the Central Himalayan 
region (Bargali et al.,2014; 2015), P. roxburghii is 
referred as early successional species in view of 
the framework of basic plant strategies provided by 
Grime (1977). 

Experimental design
	 The experiments were performed with first 
year seedlings because this is the plant life stage 
when selective pressures are stronger (Reich et 
al., 2003). Seedlings of Q. leucotrichophora and 
P. roxburghii were raised from the seeds of current 
year crop and transferred to polyethylene bags (each 
containing 1 kg prepared soil containing sieved oak 
forest soil and commercial san in 1:3 ratio). Before 
starting treatments, ten individuals of each species 
were separated into their component parts and oven 
dried to obtain the initial dry mass. The experiment 
was carried out under glasshouse condition with 
temperature ranging from 5 oC (minimum) in 
December- January to 35 oC (maximum) in June.

Fertilization Experiment
	 Four levels of nutrient were established by 
adding 144, 264, 384 and 504 mg of 12:32:16 NPK 
fertilizer to the bags. Hereafter referred as nutrient 
level N1, N2, N3 and N4, respectively. 

Water stress experiment
	 Each of the nutrient level was subjected to 
a gradient of water stress by watering the bags at 
21, 14 and 7 day intervals (referred to as W1, W2 
and W3 water levels, respectively).

Growth measurements
	 Ten seedlings per species and treatment 
were harvested at random at the end of the 
experiment. Seedlings were separated into leaves, 
stems and roots. Roots were gently washed to 

eliminate soil particles. All parts were oven dried at 
60o for 48 h and weighed separately.

Chemical analysis
	 A 0.5 g composite sample of all replicate 
of a treatment of each component of a species was 
analysed for total nitrogen, using Kjel Auto VS-KTP 
Nitrogen analyzer based on micro kjeldhal technique 
(Peach and Tracey1956, Misra 1968). The nitrogen 
mass of different component was computed as 
the products obtained by multiplying dry weight of 
component with their mean nitrogen concentration. 
Carbon stock was obtained from conversion of 
biomass using a conversion coefficient of 0.5 g C 
g DM-1 (Arora et al., 2011). The effects of treatment 
and species on biomass, C: N ratio, carbon and 
nitrogen content of the whole plant and each part 
were tested by means of a two-way analysis of 
variance (ANOVA). In addition, treatment effects on 
whole plant traits were further analysed within each 
species using a one-way ANOVA.  

RESULTS AND DISCUSSION

	 In both the species highest nutrient level 
failed to increase seedling dry mass (FG1), possibly 
due to toxic effect of nutrient. Parrish and Bazzaz 
(1982) also reported death of common early and 
late successional species at highest nutrient level. 
In conformity to trend towards the decrease in net 
primary production (Odum, 1969) and lower net 
photosynthetic rates (Bazzaz, 1979), as succession 
proceeds, the maximum production levels were 
greater in the early successional P. roxburghii than 
in the late successional Q. leucotrichophora. The 
responses of both species to nutrient availability 
were modified by watering frequencies. At each 
nutrient level, dry mass increased with increasing 
watering frequencies (FG 1).

	 The ratio of water absorbing surface to 
transpiring surface (Root: shoot ratio) is probably 
more important than actual leaf or transpiring surface 
(FG2). At each nutrient and water level, allocation 
of mass to roots was greater in Q. leucotrichophora 
in comparison to early successional  P. roxburghii, 
and a reverse trend for leaf weight ratios are in 
conformity to previously observed trends (Grime, 
1977; Chaudhary, 1989; Bisht, 1990; Bargali, 1992). 
Root: shoot ratios were generally higher where 
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Fig. 2: Effect of fertilization and watering on Root: shoot ratio and Leaf weight ratio (LWR) of Q. 
leucotrichophora and P. roxburghii seedlings.

nutrient and water were limiting factors (i.e. N1W1 
level), and lower where these factors were non 
limiting (N4W3 level). Increased nutrient availability 
is known to cause a reduction in root: shoot ratio 
in several plant species (Chaudhary, 1989; Bisht, 

1990; Chapin, 1980). Similarly an increase in soil 
water availability causes a reduction in root: shoot 
ratios (Bisht, 1990;  Rao, 1984; Bargali and Singh, 
1995).

Fig. 3: Carbon stock (g/ seedling) of Q. leucotrichophora and P. roxburghii seedlings as affected 
by nutrient and water availabilities.
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Fig. 1: Dry mass (g/ seedling) of Q. leucotrichophora and
P. roxburghii seedlings as affected by nutrient and water availabilities

 Pinus roxburghii 



497BARGALI & BARGALI, Curr. World Environ.,  Vol. 10(2), 494-499 (2015)

Fig. 4: Nitrogen mass (g/ seedling) of Q. leucotrichophora and P. roxburghii seedlings as affected 
by nutrient and water availabilities.
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	 The carbon stock (g seedling-1) also follow 
the same trend as described for seedling dry mass 
(FG3). These results indicate that lower carbon 
storage in high nutrient and lower water availability 
would decrease the capacity of seedlings to survive 
long stress periods or to recover from disturbances 
that rely on stored carbon (Chapin et al., 1990).  

	 Total seedling nitrogen mass (g seedling-1) 
was greater for Q. leucotrichophora than for P. 
roxburghii at lowest nutrient level, while towards 
higher nutrient level, nitrogen mass was greater for 
P. roxburghii (FG4). At low nutrient level P. roxburghii 
showed growth over storage as indicated by greater 
dry mass of seedling. Higher nitrogen storage in P. 
roxburghii seedlings could allow faster growth after 
transplanting in the field, as nitrogen storage allows 
faster subsequent growth (Malik and Timmer, 1998; 
Salifu and Timmer, 2003) and improve ability to 

Fig. 5: Effect of fertilization and watering on Carbon: Nitrogen: ratio (C:N) of Q. leucotrichophora 
and P. roxburghii seedlings. 
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recover from defoliating disturbance (Bargali and 
Bargali, 2000).

	 C: N ratio decreased with increasing 
nutrient level (FG5), and remains unaffected by 
water availability. These results suggest that seedling 
growth was not limited in low nutrient level, and 
addition of external nutrient supply may promote 
luxury consumption (Salifu and Jacobs, 2006) and 
accumulation on nitrogen in plant tissue for future 
use (Chapin et al.,1990; El Omari et al.,2006;  Bargali 
et al., 2005; Singh et al.,2005).
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